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ABSTRACT
This paper is concerned with two transport mechanisms governing three-phase

displacement in porous networks. The first mechanism appears in three-phase
mixtures near a tricritical point. In this case the system is in the complete wet-
ting regime. The oil phase creates thin films situated between aqueous and gas
phases through which it can be drained. The thermodynamical model involved
in planning of oil recovery processes near a tricritical point is described. It con-
sists of the model of van der Waals of a diffuse interface and that of Griffiths’of
near-tricritical mixtures. The second transport mechanism involves thick oil layers
sandwiched between water and gas in wedges of angular capillaries. Calculations
using an idealized model of a capillary tubing with angular cross section show that
for adequate combinations of pore geometry and fluid properties such layers are
thermodynamically favorable even for three-phase systems in the partial wetting
regime.

KEY WORDS: complete wetting; oil film; oil layer; oil reservoir; par-
tial wetting; pore network; spreading coefficient.
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1. INTRODUCTION
The oil phase in hydrocarbon reservoirs appears in two different connectivity

regimes:

• the continuous regime in which oil spans large portions of the porous net-
work extending over many pore diameters.

• the ”blob regime” in which oil mainly exists as disconnected ganglia.

The continuous regime can be found in virgin reservoirs, i.e. before the start
of oil production. On the other hand, as more and more of oil is produced and
the reservoir pressure gradually decreases, the continuity of the oil phase breaks
down.

The transition between the two regimes takes place after some amount of oil
has been produced. Thus, the oil phase remaining in the reservoir consists of
myriads of disconnected ganglia.

Consider now an isolated oil ganglion blocking a capillary of a nonuniform
cross-section.

The ganglion is assumed to be under the influence of an external pressure
gradient and the opposing force due to the capillary pressure. The balance of
forces acting on the ganglion can be stated as follows:

P2 = P1 +
2σow
R2

, (1)

P3 = P4 +
2σow
R1

, (2)

where σow is the oil-water interfacial tension. R1 and R2 are the downstream
and upstream mean radii of curvature, respectively. P1, P2, P3, and P4 are the
pressures associated with the ganglion’s rear and front oil-water interfaces (see
Figure 1).

Combining eq.( 1) and eq. (2) gives,

P4 − P1 = 2σow(
1

R2

− 1

R1

). (3)

The pressure drop in the aqueous phase is given by
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P1 − P4 = ∆Ψw (4)

where ∆Ψw is the drop of pressure potential. Substituting for P1 − P4 in eq.(3)
gives,

2σow(
1

R1

− 1

R2

) = ∆Ψw. (5)

The transport velocity of the aqueous phase can be estimated from the Hagen-
Pouseille equation:

ϑw = − a2

8µ
(
∆Ψw

l
) (6)

where l is the approximate length of the pathway, a is its average radius, and µ is
the viscosity of the aqueous phase.

Combining eqs. (4) and (6) gives the following expression:

2σow(
1

R1

− 1

R2

) =
8µwϑwl

a2
. (7)

Thus the length, l, of the ganglion is given by the following expression,

l = 2σow(
1

R1

− 1

R2

)/(
8µwϑw
a2

). (8)

The approximate volume of the ganglion (neglecting its extreme ends) is as
follows:

Ξ = πR2
avl = (0.25πR2

2a
2(

1

R1
− 1

R2
))/(

µwϑw
σow

). (9)

The above expression can be stated in a more compact way by introducing
a dimensionless group of parameters, Nc, defined as follows,

Nc =
µϑw
σow

. (10)

Nc is often referred to as the capillary number.
Equation (9) can be reformulated as follows.

Ξ =
0.25R2

ava
2

Nc

(
1

R1

− 1

R2

). (11)
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The total amount of oil left in the interconnected network of capillaries can
be obtained by replacing the quantities appearing in eq.(11) by their statistical
averages. Consequently, eq.(11) can be rewritten as follows,

Sor =
const.

Nc
, (12)

where Sor is the residual oil saturation representing the total volume of the oil
phase left in the network after the loss of continuity.

Typical values of Nc at the end of a water injection are approximately 10−7 −
10−6. It is usually assumed that Nc must be increased to 10−4 − 10−2 in order to
mobilize a significant amount of the residual oil. Such an increase of the capillary
number can be achieved, for example, by injecting water a into the formation.
However, a significant increase of water velocity, ϑw, is only possible to the ex-
tent one can increase the pressure gradient created by the injection pumps by the
same order of magnitude. Similarly, one can increase the viscosity of water by
injecting water-soluble polymers. However, such action will be hampered by its
limited effect on the oil flow rate. This is the reason why the only way to achieve
a significant increase in capillary number, Nc, in eq.(12) is to decrease the inter-
facial tension σ (cf. eq.(10)). The oil-water interfacial tension can be reduced, for
example, by injecting a surfactant into the formation. This leads to creation of a
three-phase fluid mixture in the subsurface characterized by the ultralow oil-water
interfacial tension and modified wetting properties Wetting properties of near-
critical three-phase fluid mixtures relevant to enhanced oil recovery processes are
described in the next section.

2. WETTING REGIMES IN OIL RESERVOIRS
Hydrocarbon reservoirs contain three coexisting phases: water, oil, and gas.

Depending on the value of the initial spreading coefficient, S i,oil can either spread
as a thin wetting film or create a lense situated between the water and gas phases.
The initial spreading coefficient S i is defined by the following expression,

Si = σgw − (σow + σgo), (13)

where σ stands for the interfacial tension, the subscript g stands for gas, w repre-
sents water, and o indicates oil.

Figure 2 shows the forces acting at the three-phase contact line along which
water, oil, and gas phases meet. The oil phase at the gas-water interface originates
either from adsorption from the vapor phase or can be attributed to spreading. The

5



equilibration of the three coexisting phases leads to a notion of the equilibrium
spreading coefficient,

Seq = σegw − (σeow + σego), (14)

The equilibrium spreading coefficient, Seq, is either negative or equal to zero.
More specifically, when Seq = 0, the oil phase completely wets the gas-water
interface. On the other hand, for Seq < 0, it only partially wets the gas-water
interface. It should be noted that the equilibrium spreading coefficient S eq can
never be positive. If, momentarily, it were gas-water interface would immediately
coat itself with a layer of the aqueous phase, replacing the supposedly higher free
energy per unit area of the direct gas water contact, σgw,by the supposedly lower
sum of the free energies per unit area of gas-oil and oil-water contacts, σgo + σow,
thereby lowering the free energy of the system [1].

The message contained in the above statement is that the spreading coefficient
may change as the thermodynamic state of the system varies. Over a certain range
of a chemical potential (or another thermodynamical field) the spreading coeffi-
cient may be negative. Otherwise, it is equal to zero (see Figure 3a). The transition
between the two regimes occuring at µ = µ∗ is the wetting transition predicted
theoretically by Cahn [1]. In particular, presence of a wetting transition can be
deduced theoretically in three-phase mixtures close to a tricritical point. The de-
duction procedure is based on van der Waals-Cahn-Hilliard theory of near-critical
interfaces briefly described in the next section.

3. VAN DER WAALS THEORY OF INTERFACES
This section describes van der Waals theory of an interface separating two

coexisting phases in its modern version applicable to a large family of multicom-
ponent systems whose behavior can be described in terms of a suitable order pa-
rameter. Before we state a formal definition of the order parameter, we make a
distinction between two types of intensive thermodynamic variables: fields and
densities [2]. By fields we understand those variables, that have the same values
in the coexisting phases (e.g., pressure, temperature, chemical potential, etc.). On
the other hand, the variables which have different values in each coexisting phase
(e.g., mole fraction, composition, etc.) are referred to as densities.

The order parameter can be thought of as some linear combination of density
variables characterizing the system under consideration. It is usually interpreted
as a numerical measure of the ”amount of order” that exists in the neighborhood
of the thermodynamical state characterizing the system under consideration.
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Consider first a multicomponent mixture consisting of two coexisting phases
(e.g., two liquid phases or a liquid phase in equilibrium with its vapor). The order
parameter is denoted by X . Xα and Xβ stand for the values of X in the bulk α
and β phases, respectively. When the coexisting α and β phases correspond to a
one-component liquid and its vapor,X can be interpreted as equal to ρ−ρc where
ρ is the specific density of the liquid and ρc is its value at the critical point. In the
region of two-phase coexistence, the order parameter takes the value Xα in the α
phase and Xβ in the β phase.

Let’s denote the interfacial free energy density of a two-phase system by f(X).
It is well known that f(X) is a continuous function in X with a characteristic
”hump” corresponding to the two-phase region ρα − ρc = Xα ≺ Xβ = ρβ − ρc
[3]. The fundamental assumption of van der Waals theory is that the interfacial
free energy is a sum of two components. The first component is the function
−V (X) defined as the difference between f(X) and the straight line. The second
component is an expression proportional to the square of the composition gradient
i.e.,

Ψ(z) = −V (X(z)) +
1

2
m(

dX

dz
)2, (15)

where z is a distance in a direction perpendicular to the plane of the interface and
m is a positive constant.

The total free interfacial energy per unit area is defined as follows.

σ =
∫ ∞

−∞
{−V (X(z) +

1

2
m(

dX

dz
)2}. (16)

It should be noted that

lim
z→−∞X = Xα (17)

and

lim
z→∞X = Xβ. (18)

The equilibrium density profile is the functionX(z) that minimizes σ in eq.(16).
The equilibrium density profile can also be obtained in a different way utilizing

an analogy between the above mentioned minimization problem and the particle
moving in a one-dimensional space subject to potential V (X) [1]. In the parti-
cle analogy, the X(z) that minimizes σ is the position coordinate of the particle
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moving between Xα and Xβ (Hamilton’s principle). Thus the equilibrium density
profile can be obtained from the Euler-Lagrange equation (L is the Lagrangian of
the system).

∂L

∂X
=
d

dt
(
∂L

∂X
), (19)

or, equivalently

m(
d2X

dz2
) = −∂V

∂X
. (20)

Thus eq.(16) can be restated as follows,

σ =
∫ ∞

−∞
(−V +K)dz =

∫ Xβ

Xα

√
−2mV (X)dX (21)

where K = 1
2
m(dX

dz
)2 is the kinetic energy of the particle and σ corresponds to

the action defined as the integral of momentum over coordinate.
The above equation will be used in the calculations of the equilibrium spread-

ing coefficient in a multicomponent mixture exhibiting tricritical behavior. The
necessary framework for such calculations is the Van der Waals-Landau-Griffiths
model of three-phase equilibria near a tricritical point. This model is briefly de-
scribed in the next section.

4. GRIFFITHS MODEL
The main assumptions of the Griffiths model of a tricritical behavior are as

follows [2]:

1. The free energy density is an analytic function of the fields and densities.

2. In a sufficiently small neighborhood of a tricritical point, the free energy
density can be expanded in a power series of the one-dimensional order
parameter Ψ,

F (Ψ) = a1Ψ + a2Ψ
2 + a3Ψ

3 + a4Ψ
4 + Ψ6. (22)

The ai are model fields that are related to the physical fields fk (such as e.g.,
temperature and pressure) by the linear relations,

ai =
4∑

k=1

αik(fk − fkt). (23)
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The coefficients αik are initially unknown and appear as a matrix of constant
coefficients. fkt are the values of fk at the tricritical point.

The absence of the term a5 is due to the fact that it can always be eliminated by
replacing Ψ by Ψ+Ψ0 in choosing Ψ0 appropriately. Furthermore, the coefficient
a6 must be positive (for thermodynamic stability) and can be set equal to unity.

In his model Griffiths uses a free energy defined by the following relation

Ω = Ωr + Ωs, (24)

where the regular part, Ωr, is an analytic function of the fields and the singular
part, Ωs, is given by the following equation,

Ωs = min
Ψ
F (a1, a2, a3,a4; Ψ). (25)

The order parameter Ψ takes different values in the coexisting phases. More
precisely, these values appear at the absolute minima (with respect to Ψ) of F (cf.
eq.(22) ) for a fixed value of a = (a∗1, a

∗
2, a

∗
3, a

∗
4; Ψ). If these minima occur for

several values of Ψ then each of these values can be ascribed to a distinct phase
and {a∗j} belong to an appropriate coexistence manifold in the field space diagram.

Griffiths [2] has shown that for the class of mixtures exhibiting tricritical be-
havior one can associate the temperature with the field a4, i.e. a4 ∼ (T − Tt)/Tt
where Tt is temperature corresponding to the tricritical point. Consequently, by
keeping a4 fixed one obtains an isothermal section of the phase diagram. An ex-
ample of such a section is shown in Figure 4. Three-phase region is spanned by
an infinite series of triangles. The points in the interior of each triangle represent
the overall compositions of the three-phase mixtures. The compositions of the
three phases lie at the triangles’ vertices. As the tricritical point is approached, a4

traverses a range of negative values toward a4 = 0. This approach is not arbitrary:
it is controlled by three different exponents describing the geometry of the three-
phase region near the tricritical point. More specifically, thickness of the stack
of triangles shrinks as |a4|3/2; the altidude of each triangle vanishes as |a4|; and
the length of the three-phase region (measured as the length of the longest side of
the triangle) varies as |a4|1/2. As shown in Figure 5, near the tricritical point the
three points representing the coexisting phases become asmptotically collinear.
Consequently, there is always a phase, which in all its properties, is intermediate
between the two other phases.

Prediction of multiphase behavior of a concrete mixture requires knowledge of
the relation between the model variables and their experimental counterparts [4].
However such knowledge is not necessary if one is only interested in qualitative
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properties of the phase behavior. In this case one can disregard the regular part of
the free energy, Ωr, because it does not affect the nature of the phase diagram. By
a ”phase diagram” we mean here the set of points at which two, or more phases,
coexist. Thus a phase diagram is essentially a ”map” of the singular part of the
free energy, Ωs

The minimization of the total thermodynamical potential, Ω, with respect to
Ψ results in a cubic equation [1,2],

Ψ3 +
1

2
a4Ψ +

1

2
a3 = 0, (26)

with three real roots Ψα,Ψβ, and Ψγ provided that a4 ≺ 0 and | a3 |	 4(−a4/6
3
2 ).

The solution of eq.(26) can be written in a unified way as follows,

Ψδ = A cosϕδ, (27)

where

φδ =




120 + θ if δ = α
120 − θ if δ = β
θ if δ = γ

(28)

It should be noted that θ lies in the interval 0 < θ ≺ 60◦ , A = (−2a4
a3

)
1
2 , and

a4 < 0.
The fields ai can reformulated as follows [4],

a1 =
3

8
A5 cos θ, (29)

a2 =
9

16
A4, (30)

a3 = −1

2
A3 cos 3θ. (31)

According to the van der Waals theory of interfaces, the interfacial tension
between phases α and β is given by the expression,

σ = m1

∫ ψβ

ψα

√
−V (Ψ)dΨ, (32)

where m1is a smoothly varying function of fields.
Following Griffiths [2,5,6] the excess free energy density is given by,
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σαβ = σ0(Ψβ − Ψα)
3(3Ψγ) (σ0 = const.), (33)

σβγ = σ0(Ψγ − Ψβ)
3(3Ψα). (34)

Summarizing, the calculation of interfacial tensions in the three-phase region
are performed according to the following algorithm:

1. Specify the overall composition ρ = (ρα, ρβ,ργ) and fix a4 ≺ 0.

2. Select a3(ρ) such that | a3 |	 4(−a4
6
)

3
2 and find θ (cf. eq. (31).

3. Calculate Ψα,Ψβ, and Ψβ from eq. (27).

4. Find σαβ, σβγ from eq. (33) and eq. (34).

The equilibrium spreading coefficient Seq(cf. eq.(14) and, consequently, the
type of wetting regime, can be now readily determined. The interfacial tension
plots corresponding to the path 2 in the composition space which enters the three-
phase region through a tieline where two phases are in equilibrium (cf. Figure 4)
and leaves it through a similar tieline is shown in Figure 6.

5. OIL LAYERS IN THE PORE SPACE
This section is concerned with a simple model describing behavior of three

phases in a wedge appearing in pore space [7,8]. The oil-water contact angle is
assumed to be smaller than the gas-oil contact angle i.e, θow < θgo (see Figure
7a). In addition, only the radii of the curvature, row and rgo,of the oil-water, and
gas-oil interfaces in the plane of the edge are assumed to be finite. Consequently,
the oil-water- and gas-oil capillary pressures are given by Pcow = σow/row and
Pcgo = σgo/rgo, respectively. The oil layer ceases to be stable as soon as the oil-
water-solid contact line coincides with the gas-oil-solid contact line (see Figure
7b). In this case, the distance AB shown in Figure 7b for an interface of radius r
and contact angle θ is given by the following expression,

AB = r
cos(θ + β)

sin β
, (35)

where β is half angle of the wedge and θ + β < π/2.
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A ratio of interfacial curvatures associated with oil-water and gas-oil interfaces
is defined as follows,

R =
row
rgo

=
Pcgo
Pcow

σow
σgo

. (36)

If rgo >> row,then the oil layer becomes very thick. As R− > 0, only oil
remains in the wedge. The coincidence of the oil-water-solid and gas-oil-solid
contact lines occurs at the critical ratio Rc of interfacial curvatures Rc,

Rc =
cos(θgo + β)

cos(θow + β)
. (37)

Thus, a stable oil layer separating gas and water is possible only when R <
Rc. For R > Rc, the oil layer is absent and there is a gas-water interface in the
wedge.

Assuming that a molecular film of water covers the porewalls and that the
system is water-wet (i.e., θow = θgw = 0), the balance of forces at the gas-oil-
solid contact line gives the following relationship,

σgw = σgo cos θgo + σow. (38)

Eq.(38) can be restated as follows,

cos θgo = 1 +
Seq

σgo
. (39)

Using the above relationship, the critical ratio Rc defined by eq.(37) is given
by the following expression,

Rc = 1 +
Seq

σgo
− (−S

eq

σgo
)

1
2 (2 +

Seq

σgo
)

1
2 tan β. (40)

Figure 3b explains behavior of oil layers present in a wedge as the spreading.
coefficient decreases from zero to a negative value. It turns out that the critical
ratio Rc decreases as the spreading coefficient Seq decreases. This explains why
in strongly water-wet systems oil layers may be present for S eq < 0, and absent
for Seq = 0.
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6. FINAL REMARKS
The simultaneous equilibrium of three phases has been described in two cases:

(a) the complete wetting regime near a tricritical point and (b) in a capillary tubing
of polygonal cross-section. In the former case the macroscopic condition that
must be imposed on the three coexisting phases is absence of a line of three-
phase contact or, equivalently, that the equilibrium spreading coefficient S eq = 0.
In the case where three-phases are situated in the edge of a polygonal tubing, it
is possible to link the capillary pressures associated with the water-gas, oil-gas,
and oil-water interfaces with their interfacial curvatures using Laplace equation
of capillarity. Consequently, unlike the former case, the oil layers in wedges of
capillary tubings can be found even when Seq < 0. However, as the spreading
coefficient decreases, the the critical ratioRc also decreases and oil layers become
less likely to exist.
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CAPTIONS

Figure 1: Entrapped oil ganglion blocking a capillary.

Figure 2: (a) Oil phase spread on water in the presence of their common
vapor prior to equilibration. The initial spreading spreading coefficient S i < 0.
(b) The configuration of three equilibrated phases in the complete wetting regime
(Seq = 0). (c) The configuration of three equilibrated phases when Seq < 0.

Figure 3: (a) Variation of the equilibrium spreading coefficient Seqas a ther-
modynamic field µ changes. At µ = µ∗ there is a transition between the complete
and partial wetting regimes [1]. (b) Variation of the equilibrium spreading coeffi-
cient Seq in a square-sectional tubing as the critical ratio of capillary pressures Rc

decreases.

Figure 4: Three-phase region in an isothermal composition space. It is a three-
dimensional volume spanned by an infinite series of triangles (three of which are
shown in the Figure. The points in the interior of each triangle represent the
overall compositions of mixtures whose phase compositions lie at the triangles’
vertices. The lines K1,2 and K2,3 are critical phases in equilibrium with a noncrit-
ical phase (C and A). Also shown are paths 1 and 2 along which the interfacial
tension is often experimentally investigated.

Figure 5: Schematical representation of the three-phase region as a tricritical
point is approached (after [1]).

Figure 6: Interfacial tension determined using the Landau-Griffiths model.
vs. distance in the isothermal density space corresponding to path 2 shown in
Figure 4.

Figure 7: (a) Configuration of oil, water, and gas in an angular corner with
half angle β: the oil layer is stable (b) Configuration of the three-phases where the
gas-oil and oil-water interfaces touch at pointB: the oil layer is unstable (modified
after [7]).
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