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ABSTRACT

Integrated circuits require effective removal of increasing heat fluxes from active
regions.  Thermal conduction strongly influences the performance of micromachined
devices including thermal actuators, Peltier-effect coolers, and bolometers.  The simulation
of these devices requires thermal property data for the thin-film materials from which they
are made.  While there are many measurement techniques available, it is often difficult to
identify the most appropriate for a device.

This article reviews thin-film thermal characterization methods with an emphasis on
identifying the properties extracted by the techniques.  The characteristic timescale of
heating and the geometry of the experimental structure govern the sensitivity of the data to
the in-plane and out-of-plane conductivities, the volumetric heat capacity, and the interface
resistances of the film.  Measurement timescales and geometry also dictate the material
volume probed most sensitively within the film.  This article uses closed-form and
numerical modeling to classify techniques according to the properties they measure.
Examples of reliably extracted properties are provided for some experimental
configurations.

This article simplifies the process of choosing the best characterization technique for a
given application in microdevice thermal design.

KEYWORDS

Thermal conductivity, metrology, measurement techniques, thermometry



1. INTRODUCTION

Knowledge of the thermal conduction properties of the solid films in integrated circuits

and related devices is essential for effective design.  As power densities continue to

increase, the efficient conduction of heat away from active regions is becoming a critical

requirement.  In some applications such as thermoelectric cooling and generation, radiation

detection, or heat spreading in high-power devices, thermal conduction directly influences

associated figures of merit.  This makes these applications especially sensitive to variations

in thermal properties of the component materials.

Thermal properties of materials in thin-film form in many cases differ strongly from

those in bulk form [1].  In crystalline and poly-crystalline dielectric and semiconducting

films, heat conduction is dominated by transport of lattice vibrational waves, whose energy

quanta are phonons.  Phonon scattering on interfaces, imperfections accumulated during the

material growth, and crystalline boundaries [1,2] reduce mean free path of heat carriers.

This additional scattering can be directionally-dependent introducing anisotropy to the

thermal conductivity.  In non-crystalline solids, such as silicon oxides and nitrides, thermal

conductivity and specific heat can also be process dependent, resulting from differences in

structure, porosity, and sample stoichiometry [3,4].

Heating and thermometry are the two essential actions in most thermal property

measurements, and there are a variety of methods available for both actions.  The relevance

of a given technique for micromachined devices relies on the spatial and temporal

resolution with which heating and thermometry are performed.  As a result, it is useful to

distinguish measurement techniques by a) the method of heating, b) the method of

thermometry c) and by the spatial and temporal resolution achieved by the measurement.



These three distinguishing features of a given technique are linked, i.e., laser-based heating

and thermometry techniques generally provide access to shorter timescales than electrical

heating and thermometry using patterned microbridges.

While there are a variety of thin-film thermal characterization techniques available

[5,6], it is not always clear which technique is most appropriate for a given application. The

precise thermal properties extracted using these methods vary depending on the timescale

of the measurements and the geometry of the associated experimental structures.  The data

obtained using these techniques are influenced, often with undocumented relative strengths,

by the in-plane and out-of-plane thermal conductivities of the film, the interface resistances,

and the volumetric heat capacity.  If the film is non-homogeneous, the region governing the

signal can vary strongly depending on the measurement technique.  For these reasons, it is

possible to extract thermal property data for a given film that are substantially different

from those governing the temperature distribution in a given device containing that film.  It

is therefore important that measurements be tailored to yield properties for a specifically

targeted property needed in the design process.  This review aims to help with this by

investigating the impact of measurement timescale and geometry on the sensitivities of the

techniques to the in-plane and out-of-plane thermal conductivities, the volumetric heat

capacity, and the interface resistances of the film.

We alert the readers to previous reviews of thermal property measurement techniques,

which have had varying objectives.  Cahill et al [7], and Swartz and Pohl [8] discuss

techniques suited particularly well for thermal property measurements of dielectric film

geometries and their interfaces.  Goodson and Flik [5] and Cahill [6] consider techniques

relevant for electronic systems. Goodson and Ju [1] study thermal conduction in novel



materials with emphasis on the structural state of the films.  Deposited diamond films were

subject of study by Graebner [9], Plamann and Fournier [10], and Touzelbaev and Goodson

[11].  Almond and Patel [12] provide an extensive overview of photothermal techniques for

thermal property measurements.

The goal of this article to is review existing thin-film thermal property measurement

techniques with an emphasis on the precise spatial and thermal property data obtained

through the measurements.  Compared to previous work, a particular emphasis is placed on

the extractable thermal property, which is directly affected by the measurement timescales

and geometries.  The considered timescales vary from the steady-state to deep sub-

nanosecond regimes accessible using mode-locked lasers.  The effects of the geometry of

the heating source are also discussed.  Additionally, this work provides examples of

transient measurements in both frequency and time domain to illustrate dependence of the

observed temperature response on both thermal conductivity and heat capacity of the

measurement layer.

2. CLASSIFICATION OF MEASUREMENT TECHNIQUES

The methods of heating and thermometry vary greatly among available measurement

techniques.  The measured properties are strongly influenced by measurement timescales,

in particular the characteristic timescale of heating and the resolution of thermometry.  This

section briefly reviews existing heating and thermometry techniques and discusses

relevance of measurement timescales in determining which precise thermal properties are

determined by a given technique.



2.1  Common Heating and Thermometry Methods

The heat flux in the most common techniques is induced either by Joule heating [13-25]

or by absorption of electromagnetic radiation [26-37].  The advantage of Joule heating

techniques is precise knowledge of the deposited heating power.  The disadvantages of

Joule heating methods include the need for fabrication of special measurement structures on

the sample surface and their electrical isolation from the sample, if it is electrically

conducting.  In the case of heating by absorption of electromagnetic radiation, the sample

often needs no additional or a very minimal amount of preparation, typically the deposition

of a metal film on the surface of the sample.  Optical techniques offer the potential for

development of high-throughput non-contact measurement systems suited particularly well

for thermal characterization of novel materials whose chemical and structural stability

during the standard fabrication procedures is often not available.  However, the amount of

the absorbed radiation power is very difficult to quantify.  In this case only relative

temperature response at the surface of the sample at several different heating frequencies

can be used to extract thermal properties of underlying layers, as discussed in subsequent

sections.

Steady-state techniques, e.g. [7,13-14], generally require knowledge of two or more

temperatures [7,13,14] at precisely-defined positions within the measurement structure.  In

contrast, transient techniques in principle do not require temperature measurements at two

different locations, if the thermal diffusion length at measurement timescales does not

exceed dimensions of the experimental structure.  One of the most common and accurate

techniques is electrical resistance thermometry [13-25], which can be precisely calibrated.

The other common technique, thermoreflectance thermometry, e.g. [26-33], uses the



temperature dependence of optical reflectivity to detect changes in the temperature of the

sample surface.  The advantage of thermoreflectance thermometry is that it requires neither

contact with the sample nor extensive sample preparation.  At most the measurement

necessitates deposition of a thin reflective coating.  The disadvantage is that the samples

have to be sufficiently reflective in order to collect satisfactory amount of radiation at the

detector.  Due to small value of thermoreflectance coefficient, which is in the order of 10-4-

10-6 K-1 for metals at room temperature, such measurements require averaging or lock-in

detection, or a combination of both [29], to improve signal-to-noise ratio.

2.2  Measurement Timescale

Many techniques measure temperatures at the heating location, which in this paper

assigned a coordinate r = 0 for convenience, where the temperature rise is highest and

easiest to measure.  Examples of this type of techniques are the three-omega technique [17-

25], performed in frequency domain, or purely-optical techniques [26-33], performed in the

time domain, for normal property measurements.  Figure 1 shows temperature response as a

function of frequency for a representative multilayer.  In this geometry, the heat is absorbed

on the surface of a 100 nm-thick layer, which has an acoustic mismatch thermal resistance

with the next one micrometer-thick layer of high thermal conductivity.  Femtosecond laser

heating and thermometry [29-33] detects this regime of heat diffusion particularly well and

was successfully applied for measurements of acoustic mismatch resistance between the

metal absorption layer and the high thermal conductivity sample, as well as the sample

thermal conductivity.  Nanosecond laser thermometry can also be applied at these

measurement frequencies, as illustrated by work of Verhoeven et al [27,28], which

measured thermal properties of highly-oriented CVD-diamond layers with thermal



conductivity normal to layers approaching 600 W m-1 K-1.  There can be considerable

thermal diffusion during the nanosecond range pulses, and therefore the analysis of the

thermal signal will have to involve the temporal pulse shape of the heating laser.

At longer timescales, heat further diffuses into the substrate through the low thermal

conductivity film.  Due to the high repetition rate, the mode-locked lasers are often not

suited for measurements in the considered regime.  Both nanosecond laser thermometry and

harmonic joule heating techniques possess relevant frequency range and have been applied

extensively for these types of measurements.  The electrical methods are most accurate but

offer limited measurement frequency range.  These low frequencies make transient Joule

heating techniques suited for the measurements of substrate properties and films of low

thermal conductivity.

In contrast to techniques presented in Fig. 1, the technique of Hatta et al [38] and the

mirage technique of Boccara et al [39], along with other related methods [40-47], use phase

delay of the temperature response under periodic heat flux at a location removed from the

heating source, r > 0.  The measurements can also be done in time domain, as in the laser

flash technique of Shibata et al [48], or the thermal grating techniques of Kaeding et al

[35,36].  Both are based on measuring characteristic rise time at a location removed from

the point of maximum heat flux.  Due to the nature of phase delay techniques, heat capacity

of measured samples cannot be decoupled from their resistance, so typically the measured

parameter is the ratio of one conductivity component and the volumetric heat capacity, or a

directional thermal diffusivity.  A more complete discussion of these techniques is given in

next section.



3. ANALYSIS

This section introduces analytical solutions to the heat conduction equation, which are

used for thermal property extraction.  The solutions are obtained using Fourier transforms

in space and time, an approach that is especially helpful for techniques using temporally- or

spatially-harmonic heating sources.  Under a temporally harmonic, or periodic, heating

source )cos(),( 0ϕωω +trP
�

, where fπω 2=  is the angular frequency and 0ϕ  is the

initial phase, the general expression for temperature response is
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Variables RT  and CT  are often referred to as resistive and capacitive components of the

temperature, respectively, and 22
CRA TTT +=  and )/(tan 1

RC TT−=∆ϕ  are amplitude and

phase delay of the temperature.

In practice heating is never negative due to always-present steady-state components of

heat generation, but the linearity of heat conduction equation with temperature-independent

thermal properties allows decoupling response to the periodic component of the heating

source.  Frequency-domain experimental techniques measure the frequency-dependence of

the magnitude of AT  and phase delay ϕ∆ , usually using lock-in amplifiers.  One approach

to interpreting the data is to solve a set of separate differential equations for RT  and CT .  A

simpler approach uses complex imbedding [49] to write the heating source as

[ ],)(exp 0ϕω +tiP  where 1−=i .  The solutions, obtained under such source, incorporate

both TR and TC components of the temperature rise into a single complex variable
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practical with the development of mathematics and programming software capable of

handling complex numbers.  Once the solution is obtained, the temperature can be

reconstructed as
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which is entirely equivalent to Eq. (1a).  For temporally periodic problems forced by a

cosine source function, this work presents complex solutions for ),,( ωθ r
�

 which are to be

translated into real temperatures using Eq. (1b).

The first sub-section provides solutions for semi-infinite media, which are useful for

interpreting both in-plane and out-of-plane conductivity measurement data.  The second

sub-section provides more detailed analysis of conduction in multi-layer structures.

3.1 Solutions for Semi-Infinite Media

Plane, line or point sources can approximate geometry of induced heat flux in many

experimental techniques.  The solutions are readily available [49]
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where p = thLi /)1( + , ωα /2=thL is thermal diffusion length, L is length of the line

for the line source, Kn is the modified Bessel function of order n, and A is the area of the

plane source.



Equations (2) contain parameter p, which is directly related to thermal diffusivity of

samples, VCk /=α .  As mentioned in Section 2, there is a class of measurement

techniques [38-47], which is based on acquiring a value of p, and therefore diffusivity of

the sample.  For convenience, one can introduce non-dimensional parameters G and H

defined as
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Values of both the real components, which are governed by the temperature amplitude, and

the imaginary components, which are governed by the phase delay, of G and H can be

experimentally determined by varying the position or frequency of the measurement.  Table

1 shows analytical expressions for these parameters, depending only on the non-

dimensional variable rp , which can be fitted to the experimental data and yield thermal

diffusivity of the sample.  The absolute values of heat flux and temperature are not needed,

and the only requirements are the sufficient bandwidth, the linear response of the

thermometry technique over the temperature and frequency range encountered in the

experiment.  It is clear that at the position r = 0, G and H have no dependence on p, which

makes these techniques use measurements of temperature at the location 0≠r some

distance, comparable to Lth, away from the heater.

The other class of techniques, not necessarily implemented in semi-infinite geometry,

[17-25], which require absolute magnitudes of temperature and heat flux, uses

measurements at 0≈r .  For small values of z in semi-infinite geometry, one can write [50]



)ln()2ln(~)(0 zzK −+−γ , where γ is Euler constant, and zz −− 1~)exp(  to obtain

functional dependence of surface temperature on the measurement angular frequency as
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where C is the constant independent of frequency.  These results are summarized in the

Table 2.  In case of point and plane sources, both in-phase and out-of-phase components

can be used to evaluate corresponding combination of thermal properties.

For measurements performed in time-domain, the surface temperature can be

constructed from the frequency components of the heating power and corresponding

solutions to the heat equation.  For the case of one-dimensional heat flow in the plane

source geometry, the temperature at the surface, provided that the heating power )(tΡ is an

even function of time )()( tt −Ρ=Ρ to satisfy 0ϕ = 0, is
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There is also a class of techniques [26-34], which measure temperatures at 0≈r , but

do not require absolute values of temperature and heat flux.  In purely optical



thermoreflectance techniques, a high-thermal conductivity metal layer is typically deposited

on top of the sample.  The metal layer serves two purposes, one of which is to absorb

radiation from the pump beam, and the second is to provide the needed thermal property

contrast with the measured layer.  Solutions in the multilayer geometry are required for the

analysis of such techniques.

3.2 Heat Conduction in Multilayer Systems

This section provides transient solutions to the three-dimensional heat conduction

equation in a multilayer with N layers.  This is important because many thin film property

measurements are performed using multiple layers surrounding the layer of interest for the

study.  Coordinate zn within each layer varies between 0 and Ln, where Ln is the thickness of

the n-th layer, while both x and y coordinates are common to all layers and extend to

infinity.  The volumetric heat generation rate in each layer, [ ])(exp yqxqtiq yxn ++ω� , is

assumed to be independent of zn.  The general solution is
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diffusivity in z-direction in the n-th layer, i is imaginary unit, nznxnx kkr ,,, /= ,

nznyny kkr ,,, /= and qx and qy are wavenumbers along x and y coordinates respectively.

Assuming insulated boundaries at z1=0 and zN=LN, free coefficients for n = 1 are
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where s = 1 for the case of the zero temperature imposed at zN = LN and s = -1 for the

insulated boundary condition at zN = LN , am are elements of vector ∑
=

−−=
N

n
nnN

2
1SPA

��

, bm,n

are elements of the of the matrix 1−= NPB .  Vector nS
�

 is given by

















−
=

++

+

1,
2

1

1

,
2

0

nzn

n

nzn

nn

kp

q

kp

q ��

�

S (8)

Matrix Pn is defined by
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where Rn is thermal resistance between the layers n and n+1.  Matrix M0 is an identity

matrix.  Free coefficients in layer n can be calculated using recursive relations

111 −−− += nnnn SCMC
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Using inverse Fourier transforms the temperature in time-space domain is obtained as
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where 1
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ωyx qqΦ  indicates the inverse Fourier transform.  Heat generation rates in frequency-

wavenumber space are obtained by direct Fourier transform
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4. STEADY-STATE TECHNIQUES

Achieving an adequate spatial resolution is particularly important for the steady-state

techniques, which generally require knowledge of two temperatures at precisely-defined

positions within the measurement structure.  The geometry of the measurement in well-

designed steady-state techniques meets three requirements.  Firstly, thermal resistance

between the measurement positions is governed by or has a substantial dependence on

thermal conduction in the layer of interest.  Secondly, this resistance has very little or no

dependence on thermal conduction to the environment once heat flows out of the

measurement structure.  Finally, thermal resistance between the measurement locations has

to be at least comparable to the total thermal resistance to the environment or heat sink in

order to reduce measurement errors.

4.1 Conductivity Normal to Layers

An example of the spatially-resolved approach to measure thermal conduction

properties normal to layers is a technique used by Swartz and Pohl [13] to measure thermal

boundary resistance between the metal and the substrate.  Both heater and thermometer

lines were placed parallel to each other on the top the substrate.  The small separation

between the lines makes the difference in their temperatures to be governed not only by

thermal properties of the substrate, but also by the thermal resistance between the metal

film and the substrate, which subsequently can be extracted if substrate properties are

known.  A closer placement of thermometer line to the heater line allows measuring smaller

values of the thermal resistance and reduces sensitivity of the measurement to the substrate

thermal properties.  This technique was later modified by Cahill [7] to measure thermal

resistances of oxide films sandwiched between metal and substrate, Rth=d / k, where d is



film thickness and k its thermal conductivity.  Goodson [51] provided correction for the

films whose thickness is comparable to the heater width, w, where lateral spreading can be

substantial.  Thermal resistance is ( )Ψ= kdRth / , where
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which is within 0.5 percent for w / d > 0.6

Schafft et al [15] and Brotzen et al [16] also used metal bridges to measure kn for

amorphous silicon dioxide films.  Both techniques employ only a single bridge, which

makes it difficult to decouple thermal resistance due to the measured layer from the overall

thermal resistances to the environment or heat sink.  Accordingly, these techniques are

suited only for the case when film thermal resistance dominates the overall resistance to the

heat sink / environment, or when components of the thermal resistance other than the film

resistance are known or predicted using the necessary assumptions.

4.2 Conductivity along Layers

Steady state techniques for thermal conductivity measurement are well developed and

have been reviewed by Goodson and Flik [5].  Most of these techniques suspend the layers

of interest, which forces the one dimensional heat flow in the film.  Another technique [14]

uses high thermal resistance layer with known properties between the substrate and the

measured film, which also forces one-dimensional heat flow along the film.  Any

measurement errors in the thickness of the film directly affect the extracted property, since

these techniques measure film conductance, dka × .



It is also possible to force heat flow spreading in the film by making strip heater

width comparable to the film thickness.  If film is isotropic and its out-of-plane thermal

conductivity is known, the reduction of film thermal resistance due to spreading can be

obtained using approximation given by Eq. (12), otherwise the film is anisotropic.  There is

no mention of such steady-state technique in the literature to the best of our knowledge.

5. FREQUENCY DOMAIN TECHNIQUES

Harmonic joule-heating techniques, particularly three-omega technique, became very

popular in the past few years.  Most common applications, which are well documented in

the literature, involve measurements of bulk thermal conductivity in the line-source

geometry and measurement of thermal resistance of thin dielectric films with low thermal

conductivity.  In this section we concentrate on some less common experimental

configurations, which can also find applications in thin film thermal property metrology.

5.1 Plane- and Point-Source Semi-Infinite Geometries

The plane source solution is well suited for the geometry of the suspended film.  Figure

2 shows the data and the fit using Eq. 4a.  The data are taken from a three-micron thick

suspended film, which in this particular case is a SiGe superlattice layer.  Both in-phase and

out-of-phase components, as discussed in Section 3, can be used to extract thermal product

of the measured material.  This feature can be useful in the uncertainty analysis.  For this

layer, the film heat capacity was available, which resulted in the extracted thermal

conductivity of 13.5 Wam-1aK-1 at room temperature.  If heat capacity is unknown, one can

complement thus measurement with the phase delay technique in order to obtain values of

thermal diffusivity, as discussed in Section 3.



Recently developed techniques can induce local heating in the geometry of point source

and thus achieve high spatial resolution in mapping sample thermal properties [52-55].

One promising example is the study of Fiege et al [56] that applied local harmonic-heating

generated in a resistive element with a contact area dimension of around 30 nm along the

surface of diamond layer.  The effects of contact topography, which governs thermal

contact resistance between the heater and the layer, can easily be decoupled, since it results

in frequency independent contributions to the thermal signal.  By directly comparing data

with the data taken on the material with known thermal properties, Fiege et al [56] spatially

mapped thermal conductivity of thick CVD-diamond film.  Their work demonstrated an

extension of three-omega technique to the point source geometry, however the extraction of

data using line source solution may have contributed to the overall errors.

5.2 Multilayer Geometry

Harmonic Joule heating techniques are used extensively to study thermal conductivities

of thin dielectric layers [19-25].  At measurement frequencies below the heat diffusion

frequency of the film, the slope )ln(/ ωθ dd  still depends on substrate thermal

conductivity, while there is an additional frequency independent component due to thermal

resistance of the thin film.  The geometry of the measurement can be modified to

accommodate measurements of the lateral thermal conductivity of the layer [22,24], if the

width of the line is comparable to the thickness of the measured layer.  In that case, the

resistance of the layer also becomes a function of the lateral conductivity.  Typically it is

more convenient to measure normal properties by using wider line in order to reduce

uncertainties.  Figure 3 demonstrates measurement of both normal and lateral of



components of polymer thermal conductivity using this approach [24].  The exact

experimental geometry was captured in the numerical simulations, which used finite-

differences with complex imbedding.

6. TIME DOMAIN TECHNIQUES

Thermoreflectance measurements, which use pulsed lasers, are examples of time-

domain techniques.  In the most common experimental configuration, a thin layer with high

thermal resistance is sandwiched between the substrate and the thick deposited metal.  The

property extracted in this technique is the thermal resistance of the layer [6,26,34].  Stoner

and Maris [30] performed a related measurement, which used mode-locked lasers, where

the property of interest was the Kapitza resistance between the metal and diamond.  Due to

the high thermal conductivity of diamond, it has negligible contribution to the surface

temperature rise and may be left out in the data analysis.  In this section we consider other

experimental configurations, which received less attention, but can be useful in many

applications.

6.1 Semi-Infinite Geometry

One-dimensional conduction in a semi-infinite medium can be modeled by considering

an equivalent thermal circuit, shown on the left of Fig. 4.  The time dependent response of

this circuit, which has frequency-dependent resistance and capacitance, can be exactly

described by the solution to the plane source heat conduction equation, given in Section 3.

This figure also shows that the characteristic RC timescale of this circuit is independent of

the material property.  By introducing high-conductivity metal layer, additional thermal

capacitor of known value is added to the thermal circuit, shown on the right side of the



same figure.  The thermal excitation frequencies higher than 2/~ mm dαω  will result in a

temperature response governed predominantly by the metal overlayer.  At lower

measurement frequencies, the RC timescale of such circuit is most sensitive to the thermal

product of the substrate and the volumetric thermal heat capacity and thickness of the

metal, as shown in Fig. 4.  Uncertainty in the thickness of the metal layer can contribute

substantially to the overall uncertainty of the measurement since the measured property

combination (CV,m dm)2 /(kS  ρS) contains the square of the metal thickness.

Figure 5 shows the thermoreflectance signal obtained from the thick polymer layer and

results of fitted solutions to the heat conduction equation in the appropriate geometry.  The

values of the thermal heat capacity of the substrate and thickness of the metal were varied

over a wide range and resulted in values of the fitted thermal conductivity of the substrate

which satisfied the relation d2 kS
-1

 ρS
-1 = const in accordance with the simplified thermal

circuit analysis.

6.2 Measurements of Thin Film Properties

Figure 6 shows the experimental data and fit for the three-layer case, when the

thickness of the measured layer is comparable to the thickness of the top metal layer.  This

represents an intermediate case between the measurements of the thermal resistance and of

the thermal properties in semi-infinite medium, which was considered in the preceding

paragraph.  The decaying temperature can be subdivided into two regimes.  At high

frequencies/short timescales, thermal conduction can be viewed to be semi-infinite in the

layer, and therefore has sensitivity on both thermal conductivity and heat capacity, as

discussed in the previous sub-section.  At longer timescales, i.e. α/2dt > , the sensitivity



will be mostly on the thermal conductivity of the layer.  By choosing the length of the

measurement, one can correspondingly increase or decrease sensitivity of the fit on the heat

capacity of the film.  For the case presented in Fig. 6, the total length of the measurement

about three times longer than the diffusion time through the film, which greatly diminishes

the sensitivity of fit on heat capacity of the film.  Decreasing heat capacity of the film from

the best fitted value of 1.5 MJ m-3 K-1 by 33 % resulted in corresponding increase change of

thermal conductivity by only less than 3 %.

7. CONCLUSIONS

This work provides an overview of techniques measuring material thermal properties

based on the geometry and timescale of the experiment.  The timescale of these

measurement techniques varies widely from the steady-state to short timescale heat

conduction regimes, accessible through laser heating and thermometry.  Accordingly, each

of these techniques has different application ranges, Fig. 1.

This work discussed some common experiments, in which layer thermal conductivity

and heat capacity influence with varying strengths the measured temperature response.

Using both harmonic Joule heating and optical techniques, we also provided several

examples, which involve experimental configurations not yet well-documented in the

literature.
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Table 1. Mathematical expressions for analysis of experimental data directly governed by the

sample thermal diffusivity α, Section 3.1.  Thermal diffusivity is related to the parameter p

= thLi /)1( + , where ./2 ωα=thL   Experimental values of functions G and H can be

determined from temperatures taken at varying positions or frequencies.  The assumed geometry is

semi-infinite.
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Table 2. Mathematical expressions for the analysis of experimental temperature response

obtained at the location of heat source (r = 0), Section 3.1.  The assumed geometry is semi-

infinite.



FIGURE CAPTIONS

Fig. 1. Frequency range of most common types of heating and thermometry.  Layers,

whose internal or boundary thermal properties govern the surface temperature response,

change with with the measurement frequency.

Fig. 2. Example of three-omega measurement with plane heating source.  The

extraction procedure used an expression given in Table 2.

Fig. 3. Example of three-omega measurements sensitive to the lateral heat spreading in

the measured layer.  Thermal resistance of the polymer film in case of localized heating,

whose extent is comparable to film thickness, is a function of both normal and lateral

components of the conductivity tensor.

Fig. 4.  Equivalent thermal circuit representation of heat conduction in thin film-

substrate system.  Thermal circuit on the left side of the figure models temperature

response of the semi-infinite media to plane source with angular frequency ω.  The RC

timescale of this circuit is independent of substrate thermal properties.  Addition of a layer

with much higher thermal conductivity and known heat capacitance allows measurements

of substrate thermal property.  Figure 5 shows an example of such measurement.

Fig. 5. Example of thermoreflectance measurement on a metal film/substrate system.

Extraction of a substrate thermal conductivity requires precise knowledge of substrate and



metal heat capacities, as well as of the metal thickness.  Also see Fig. 4 for the equivalent

thermal circuit representation.

Fig. 6.  Example of thermoreflectance measurement on a metal/measured

layer/substrate system.  In the initial stages of the temperature decay the heat capacity of

the measured film is important, as in case shown in Fig. 5.



FIG. 1, Touzelbaev et al

Fig. 1. Frequency range of most common types of heating and thermometry.  Layers,

whose internal or boundary thermal properties govern the surface temperature response,

change with with the measurement frequency.
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FIG. 2, Touzelbaev et al

Fig. 2. Example of three-omega measurement with plane heating source.  The

extraction procedure used an expression given in Table 2.
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FIG. 3, Touzelbaev et al

Fig. 3. Example of three-omega measurements sensitive to the lateral heat spreading in

the measured layer.  Thermal resistance of the polymer film in case of localized heating,

whose extent is comparable to film thickness, is a function of both normal and lateral

components of the conductivity tensor.
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FIG. 4, Touzelbaev et al

Fig. 4.  Equivalent thermal circuit representation of heat conduction in thin film-

substrate system.  Thermal circuit on the left side of the figure models temperature

response of the semi-infinite media to plane source with angular frequency ω.  The RC

timescale of this circuit is independent of substrate thermal properties.  Addition of a layer

with much higher thermal conductivity and known heat capacitance allows measurements

of substrate thermal property.  Figure 5 shows an example of such measurement.

q

ω2
kCV=C

kCVω
2=R

ω
1

~CR

One Layer Semi-Infinite Two Layer Semi-Infinite

kCVω
2=R

ω2
kCV=C

RR <=
m

m
m

k
d

mmVm dC ,=Cq

2, ,
21

~
m

m

V

mmV
dkC

dC
αω

ωω
>+CR



FIG. 5, Touzelbaev et al

Fig. 5. Example of thermoreflectance measurement on a metal film/substrate system.

Extraction of a substrate thermal conductivity requires precise knowledge of substrate and

metal heat capacities, as well as of the metal thickness.  Also see Fig. 4 for the equivalent

thermal circuit representation.
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FIG. 6, Touzelbaev et al

Fig. 6.  Example of thermoreflectance measurement on a metal/measured

layer/substrate system.  In the initial stages of the temperature decay the heat capacity of

the measured film is important, as in case shown in Fig. 5.
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