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ABSTRACT

We present Monte Carlo simulation calculations for the mean-square end-to-end distance and sec-

ond virial coefficient for model linear and star polymers composed of hard spheres with square-

well attractions. For these polymers, we find two types of crossover behavior: (i) crossover from

the Gaussian chain to the Kuhnian chain limits and (ii) crossover from the semiflexible chain to

the Kuhnian chain limits. We also present a crossover theory for the properties of dilute linear

and star polymers in good solvent conditions. This model directly relates the properties of the

monomer-monomer interaction to the renormalized parameters of the theory. The predictions of

the crossover theory are in good agreement with simulation data. We also present a new equation

of state for linear and star polymers in good solvents. The equation of state captures the scal-

ing behavior of polymer solutions in the dilute/semidilute regimes and also performs well in the

concentrated regimes, where the details of the monomer-monomer interactions become important.

We compare this theory to Monte Carlo simulation data for the volumetric behavior of tangent

hard-sphere polymers.
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1. INTRODUCTION

For sufficiently high molecular weights, the properties of dilute polymer solutions, in good sol-

vent conditions, exhibit universal scaling behavior [1]. For example, the mean square end-to-end

distance 〈R2〉 has the form

〈R2〉 = AN2ν , (1)

where N is the degree of polymerization, ν is a universal scaling exponent, and A is a coeffi-

cient that depends on the details of the polymer. In the absence of excluded-volume interactions,

ν = 0.5, and the polymer exhibits Gaussian statistics. When excluded-volume interactions are

present, ν = 0.588, and the polymer exhibits Kuhnian statistics [1]. Another example of the

scaling behavior is the pressure p of a polymer system, which is given by [1]

p

kBTcp

= Z(cpN
dν), (2)

where kB is the Boltzmann constant, T is the absolute temperature of the system, cp is the concen-

tration of polymer in solution, and d is the dimensionality of space.

We develop a crossover theory for dilute linear and star polymer solutions, similar in form to

crossover theories for critical phenomena in simple fluids. We then compare our results with Monte

Carlo simulations for a simple model polymer to test the accuracy of our theory. In addition, we

are able to ascertain a precise relation between the renormalized parameters of our theory and the

microscopic parameters of our model polymer.

The remainder of the paper is organized as follows. First, in Section 2, we provide a brief

review of polymer field theory and develop a crossover theory for dilute polymer solutions. In

Section 3, we present the theory for the thermodynamics of dilute to concentrated polymer solu-

tions.

2. DILUTE POLYMER SYSTEMS

The Edwards Hamiltonian provides a coarse-grained description of a fully flexible polymer chain

with excluded-volume interactions [2]. For star polymers, this generalizes to [3]

H[R] =
1

2

f
∑

α=1

∫ SB

0
dtα

(

∂R(tα)

∂tα

)2

+
vB

2

f
∑

α,γ=1

∫ SB

0
dtα

∫ SB

0
dt′γδ(R(tα)− R(t′γ)), (3)
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where d is the dimensionality of space, f is the number of arms on the star polymer, SB is propor-

tional to the molecular weight of each arm of the star polymer, vB is an effective segment-segment

interaction parameter that measures the strength of the excluded-volume interaction, and R(tα)

is the position of “segment” tα on arm α of the star polymer. The first term enforces the con-

nectivity of the polymer, and the second term accounts for excluded-volume interactions between

“segments” of the polymer. Due to the coarse-grained nature of the Edwards Hamiltonian, it is

limited to polymers with many statistical segments [1, 2].

Above the theta temperature, the two-body interaction constant vB > 0. In this case, the model

is not exactly solvable, and renormalized perturbation methods need to be used (see Ref. [1] for

details). In this method, a general property Q is given by

Z−1
Q (u)Q(u, S; L) = lim

a→0
QB(vB, SB; a), (4)

where a is a cutoff length for the model, and L is the length scale at which the property is measured.

The function ZQ(u) and renormalized parameters u = vBLε, where ε = 4− d, and S = Nl2/d of

the Edwards Hamiltonian, are chosen to absorb the divergences of the model as a → 0. Note that

the values of the renormalized parameters u and S depend on L, but despite this, the measurable

properties of the system Q should be independent of the length scale at which they are measured.

This independence leads to the renormalization-group equation, which relates the model param-

eters u and S at length scale L to the parameters at length scale LR (uR and SR), through the

following equations [4]

1− Y = ū(1− ū)−ε/2

(

L2
R

L2

)ε/2

Y ε/ω (5)

SR

S
= (1− ū)(2−1/ν)/ωY −(2−1/ν)/ω exp [−κ(1− ū) + κY ] , (6)

where κ = 11u∗/16, ū = u/u∗, ūR = uR/u∗, and Y = 1− ūR is the crossover function. The best

estimates of the exponents are ν = 0.5880, and ω = 0.790 [5]. The best estimate of the fixed point

u∗ is u∗ = 0.1771 [5].

An explicit form of the crossover function depends on the match-point condition accepted in

the theory. Here we choose L2
R = fSR, and the crossover function is written in the form

(1− Y )2/ε = N̄Y 1/∆eκY , (7)
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where ∆ = ων, N̄ = fN/N ∗, and N∗ is given by

N∗ = (ūΛ)−2|1− ū|1/∆eκ(1−ū), (8)

where Λ−2 = L2d/l2 is a system-dependent parameter.

The crossover function Y has the following asymptotic limits:

Y →











1− eκ/2N̄1/2 + · · · for N̄ � 1

N̄−∆[1−∆(2 + κ)N̄−∆ + · · ·] for N̄ � 1.
(9)

When Y ≈ 1, the excluded-volume interactions play a minor role, and the polymer is nearly

Gaussian. When Y � 1, the excluded-volume interactions play a major role, and the polymer

exhibits Kuhnian statistics.

From Eq. (9), the polymer exhibits Gaussian statistics when the chain length N obeys N ∗ �

N � 1. When N ∼ 1, the chain is too short for the Edwards Hamiltonian to apply, and the

statistics of the chain are no longer universal, but instead depend strongly on the details of the

chain. When the polymer exceeds a critical length, N � N ∗, it exhibits Kuhnian statistics. This is

in direct analogy to systems near a second-order phase transition [6]. For these systems, mean-field

critical behavior is observed when Gi � τ � 1, where τ = |T/Tc − 1|, T is the temperature of

the system, Tc is the critical temperature of the system, and Gi is the Ginzburg number. Universal

critical behavior is observed when τ � Gi. Therefore, in dilute polymer solutions, 1/N plays the

role of τ , and 1/N ∗ is analogous to the Ginzburg number Gi.

The usefulness of the crossover function Y lies in the fact that the properties of the polymer can

be written as a universal function of Y , independently of the details of the polymer. These details

are contained in the parameters ū and N ∗. For example, the mean-square end-to-end distance 〈R2〉

can be written in terms of the crossover function as [7]

〈R2〉

Nl2
= aYR, (10)

where the crossover function is

YR = [1 + e1(1− Y ) + e2(1− Y )2]Y −(2ν−1)/∆eκY , (11)

the universal constants e1 = −0.125 and e2 = 0.283 [4], and the amplitude a is given by

a = |1− ū|(2ν−1)/∆e−κ(1−ū). (12)
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We compare our theoretical predictions against simulations for model polymers composed of

rigidly bonded hard spheres. We model the star polymers as being composed of rigidly bonded

hard spheres of diameter σ. The f arms of the star polymer are all attached to a central “core”

sphere. Each arm consists of N spheres, and the bond length between each of the spheres is l. A

schematic drawing of a model star polymer is given in Fig. 1.

In Fig. 2, we plot the variation of the mean-square end-to-end and mean-square center-to-end

distances for polymers of various values of σ/l as a function of the number of spheres on the

polymer N . The long-dashed line represents the scaling relation given in Eq. (1) with A = 0.792.

The simulation data for σ/l > 0.447 lie above this curve, while the data for σ/l < 0.447 lie below.

The simulation data for σ/l = 0.447 lie directly on this curve.

If one were to fit an equation of the form

〈R2〉

l2
= AeffN

2νeff (13)

to the data for σ/l > 0.447, one would find an effective exponent νeff higher than the theoretical

value, ν = 0.5880, for finite chain lengths. As data for longer and longer length chains are fitted,

the effective exponent will gradually decrease to the theoretical value ν. For systems with σ/l <

0.447, the effective exponent is lower than the actual exponent and monotonically increases to ν

with increasing chain length.

When N̄ � 1, 〈R2〉 can be written in Wegner scaling form

〈R2〉

l2
= A0N

2ν
[

1 + A1N
−∆ + · · ·

]

. (14)

If one fits a Wegner-type equation to the data, theoretically, one expects [4] to find a negative

Wegner coefficient A1 if ū > 1, and a positive Wegner coefficient if ū < 1. When ū = 1,

the Wegner correction vanishes, and there is pure scaling behavior. Therefore, we find that the

case σ/l = 0.447 corresponds to ū = 1, σ/l < 0.447 corresponds to ū < 1, and σ/l > 0.447

corresponds to ū > 1.

These results, combined with the fact that ū is proportional to the strength of the excluded-

volume interaction, leads to

ū = 11.18
(

σ

l

)3

. (15)
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For polymers composed of hard spheres with square-well attractions, the expression for ū is

slightly more complicated [8], involving also the depth and width of the attractive well.

The crossover function given in Eq. (7) is based on an expansion that is valid for small values

of the parameter ū. It is accurate only in the case ū < 1. The case ū > 1 describes the crossover

behavior of a semiflexible polymer with excluded-volume interactions. The Edwards Hamiltonian,

which described fully flexible polymers, is no longer relevant, and a different Hamiltonian needs

to be employed (for example, see Ref. [9]). We do not consider this situation.

For ū < 1, the crossover theory predicts that all polymer data for 〈R2〉 can be collapsed to

a single universal function, if rescaled properly. To demonstrate this, we plot the variation of

〈R2〉/(Na) with N̄ for polymers with ū < 1 in Fig. 3. The symbols are the results of Monte Carlo

simulations, and the line is the theoretical crossover function. The data collapse onto a single

universal curve, that is well described by the theory. We see the crossover from Gaussian behavior

with 〈R2〉 ∝ N when N̄ � 1 to Kuhnian behavior with 〈R2〉 ∝ N2ν when N̄ � 1.

Another quantity of interest is the penetration function Ψ, defined by [1]

Ψ =

(

d

12π

)d/2
2B2

〈R2
g〉

d/2
, (16)

where B2 is the second virial coefficient between two polymers, and 〈R2
g〉 is the mean-square

radius of gyration of the polymer. For polymer solutions, the penetration function Ψ characterizes

the solvent quality and controls the crossover behavior of the osmotic pressure in the dilute and

semidilute regimes [10, 1]. The crossover expression for the penetration function of a star polymer

with f arms is given by [11, 8, 12, 3]

Ψ =
gd/2

8
(1− Y )

[

a0 + a1(1− Y ) + a2(1− Y )2

1 + b1(1− Y ) + b2(1− Y )2

]

, (17)

where

g =
f 2

3f − 2
,

a0 = 53/32,

a1 =
1

2
ln 2 +

7

48
+

13

8

(f − 1)(f − 2)

3f − 2
,

b1 =
1

4

(f − 1)(15f − 22)

3f − 2
ln 2 +

(

9

8
ln 3−

7

4
ln 2

)

(f − 1)(f − 2)−
1

2
ln f,

a2 = −0.087 + 2.643(f − 1)(f − 2),

b2 = (0.946 + 0.213gd/2)(f − 1)(f − 2),
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In good solvent conditions, the penetration function for a star polymer monotonically ap-

proaches a finite, asymptotic limiting value Ψ∗(f) as its molecular weight becomes infinitely large.

This limiting value Ψ∗(f) depends only on the number of arms in the star polymer and is inde-

pendent of the molecular details of the polymer (as long as it is in good solvent conditions). A

summary of Ψ∗(f) as obtained from experimental, computer simulation, and theoretical work can

be found in Table 1 of Ref. [13].

In Fig. 4, we plot the variation Ψ with the number of spheres per arm N for three-arm (f = 3)

star polymers with various values of σ/l. For polymers with σ/l < 0.447, Ψ gradually increases

with molecular weight; for σ/l > 0.447, Ψ gradually decreases with molecular weight. Regardless

of the value of σ/l, however, the penetration function approaches the same asymptotic limit as

the molecular weight becomes infinitely large. The closer the value of σ/l is to 0.447, the more

rapidly the penetration function approaches its asymptotic value. Precisely at this critical value

of σ/l, Ψ(f = 3) remains roughly constant, nearly equal to its asymptotic value Ψ∗(f = 3) for

almost all molecular weights.

This same qualitative behavior is observed for linear polymers [4, 8, 14] and star polymers

of differing number of arms. The value of σ/l that corresponds to ū = 1 (i.e., σ/l = 0.447)

is independent of the number of arms f on the star polymer; however, the asymptotic limiting

value Ψ∗(f) of the penetration function is dependent on f . Therefore, we find that ū = 1 when

σ/l = 0.447, independent of the number of arms on the star polymer. This is consistent with the

value found from 〈R2〉.

Monte Carlo simulation data for Ψ∗(f) for f = 3, 4, 5, and 6 arm star polymers are shown in

Fig. 5. These values are in good agreement with the simulation data of Ref. [13]. As a comparison,

we also show in Fig. 5 the predictions obtained by Douglas and Freed [12], given by the dash-

dotted line. The predictions of Douglas and Freed are systematically higher than simulation data,

and the difference between them increases dramatically for f ≥ 6.

In the limit f → ∞, Eq. (17) yields Ψ∗(f → ∞) = 1.55, which is close to the hard-sphere

limit ΨHS = 1.619 [15]. Roovers and coworkers suggest [16] that Ψ∗(f →∞) should be precisely

equal to the penetration function for hard spheres; however, others have pointed out that there is no

justification that these two values should be exactly the same [12]. Using Daoud-Cotton theory[17],

Ohno and co-workers [15] estimate Ψ∗(f →∞) = 2.13.

8



Figure 6 compares simulation data for 0.1 ≤ σ/l < 0.447 to the rescaled values of the pen-

etration function, Ψ̄ = Ψ(N̄ , f)/Ψ∗(f), calculated with Eq. (17). The predicted values of the

penetration function are in fairly good agreement with the simulation data; however, there is sys-

tematic deviation. These systematic deviations can be eliminated if the experimental values of the

parameter N̄ are rescaled by a factor of 3.5 (i.e., N̄exp = 3.5(fN/N ∗)). This corresponds to choos-

ing a match point of L2
R = 3.5fSR in Eq. (5), rather than L2

R = fSR. After this rescaling, excellent

agreement between the simulation data (filled symbols in Fig. 6) and the calculated values of the

penetration function is obtained over the entire range of N̄ . Note that Ψ̄ is not a universal function

of the parameter N̄ alone, and for f > 6, it depends strongly on the number of arms.

3. POLYMER SOLUTIONS

In the dilute and semidilute regimes, the connectivity of the polymers induce long-range correla-

tions between the monomer segments. The details of the monomer-monomer interactions do not

play a major role; thus, a coarse-grained description of the polymers, such as the Edwards Hamil-

tonian [2, 3], can be used. It can be shown [18, 19] that, to one-loop order, the Helmholtz free

energy F of a linear or star polymer solution, in the dilute to semidilute regimes, is given by

F

kBTV
= cp

[

ln
cp

Q
− 1

]

+ cpX exp

[

−
κΨ̄

4
A(X)

]

, (18)

where V is the volume of the system, Q is the partition function of an isolated, self-interacting

chain, cp is the number density of polymer molecules in the system, X = B2cp, Ψ̄ = Ψ(N, f)/Ψ∗(f)

is a scaled penetration function, κ = (2 − dν)/(dν − 1) ≈ 0.3089 is a universal constant, and

A(x) = x−2[2x + 6x2 − (1 + 2x)2 ln(1 + 2x)]. The corresponding expression for the compress-

ibility factor Z is

Z = 1 + X

[

1 +
κΨ̄

2
B(X)

]

exp

[

−
κΨ̄

4
A(X)

]

, (19)

where B(x) = x−2[2x + 2x2 − (1 + 2x) ln(1 + 2x)]. This free-energy model agrees with the

theoretical scaling results [1, 5].

In this theory, the polymer architecture does not enter explicitly into the thermodynamic prop-

erties of the system. The only distinction between different architectures is the asymptotic limit of

the penetration function Ψ∗. All polymers, regardless of architecture, should approach the same
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limiting form of the equation of state in the dilute/semidilute regimes as the molecular weight of

the polymer becomes infinitely large.

Recall that for stiff polymers, Ψ̄ > 1, and gradually decreases to Ψ̄ = 1 as the molecular

weight increases. For fully flexible polymers Ψ̄ < 1, and gradually increases as the molecular

weight increases. Therefore, for stiff polymers in the dilute/semidilute regime, we expect the

compressibility factor to decrease to the infinite-molecular-weight limit as the molecular weight of

the polymer increases, while for flexible polymers, we expect the compressibility factor to increase.

This is shown in Fig. 7, where the dashed lines represent polymer systems with Ψ̄ > 1, the dotted

lines represent systems with Ψ̄ < 1, and the solid line is a system with Ψ̄ = 1 (infinite molecular

weight limit).

In the concentrated regime, where the details of the monomer-monomer interactions become

important, the expression for the Helmholtz free energy given in Eq. (18) breaks down. In Ref. [18],

we demonstrated how the renormalization procedure used in the polymer field theory could be

applied to a liquid-state theory type approach, which includes details of the monomer-monomer

interactions. This lead to the following expression for the residual Helmholtz free energy F res:

βF res(T, cp) = βF res
ref (T, Ncp) +

V

2
N2f̂(0)c2

p + V cpX̄ exp

[

−
κΨ̄

4
A(X̄)

]

, (20)

where F res
ref is the residual Helmholtz free energy of a disconnected monomer fluid, X̄ = B2cpΓ1,

Γ1 = ĥref(0)/f̂(0), f̂(0) is the zero-wave vector value of the Mayer f -function of the monomer-

monomer interaction, and ĥref(0) is the zero-wave vector value of the total correlation function of

a disconnected monomer fluid. The equation of state is given by

Z = 1 + NZres
ref(T, Ncp) +

1

2
f̂(0)N2cp

+X̄(1 + Γ2)

[

1 +
κΨ̄

4
B(X̄)

]

exp

[

−
κΨ̄

4
A(X̄)

]

, (21)

where Zres
ref is the residual compressibility factor for the disconnected monomer fluid, and Γ2 =

∂ ln Γ1/∂ ln(Ncp). Note that this expression inherently assumes that f̂(0) < 0, which corresponds

to chains in good solvent conditions. In addition, this expression assumes that the polymer molec-

ular weight is large. This expression is valid for polymer solutions in the dilute to concentrated

regimes.
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We compare our theory with simulation data for tangent-hard-sphere chains. For this system,

the reference fluid is the hard-sphere fluid, which is well described by the Carnahan-Starling equa-

tion of state [20]

Zres
HS =

2y(2− y)

(1− y)3
, (22)

where y = πσ3cp/6 is the fraction of space occupied by the spheres. For this equation of state, the

functions Γ1 and Γ2 are given by

Γ1 =
1− y/4

1 + 4y + 4y2 − 4y3 + y4
, (23)

and

Γ2 = −
y(17 + 32y − 52y2 + 24y3 − 3y4)

(4− y)(1 + 4y + 4y2 − 4y3 + y4)
. (24)

In Fig. 8, we plot the equation of state of fluids composed of tangent hard-sphere chains with

N = 51 and N = 201 in the concentrated regime. The symbols are the results from computer sim-

ulations from various researchers. The solid lines are the predictions of Eq. (21), and the dashed

lines are the predictions of the commonly used thermodynamic-perturbation-theory (TPT) equa-

tion of state for tangent hard-sphere chains [21]. The values for the second virial coefficient and

penetration function used in Eq. (21) were taken from Refs. [22] and [18]. For packing fractions

y ≤ 0.3, the predictions of Eq. (21) are in slightly better agreement than the TPT equation of state

with the simulation data. Even for chains as short as N = 4, the crossover equation of state still

yields reasonable results [18]. At higher packing fractions, the predictions of Eq. (21) become

slightly worse than the TPT equation of state, although they both overpredict the pressure of the

system.

In Fig. 9, we plot the equation of state of tangent hard-sphere chains of different lengths, from

the dilute to concentrated regimes. The symbols are the results of the Monte Carlo simulations,

and the lines are the predictions of Eq. (21). As the molecular weight of the chain becomes infinite,

the compressibility factor approaches a universal function of B2cp, given by the dash-dotted line.

The open symbols, which represent systems in the dilute/semidilute regimes, where y � 1, lie

approximately on a single, universal curve. This behavior is also observed experimentally for

polymers in good solvents [1]. As the fraction of space occupied by the monomers increases, the
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equation of state deviates from the universal curve: as N decreases, the deviation occurs at a lower

value of X . As can be seen, the predictions of Eq. (21) agree well with the simulation data.

In Fig. 10, we compare the predictions of the TPT equation of state for dilute/semidilute tangent

hard-sphere systems with Monte Carlo simulation data. In the dilute and semidilute regions, the

TPT equation of state overpredicts the pressure of the system, and the results steadily worsen with

decreasing polymer concentration and with increasing N . This can be traced to the fact that the

TPT equation possesses a second virial coefficient B2 which scales incorrectly with the degree of

polymerization (B2 ∝ N2 rather than B2 ∝ Ndν) and, therefore, overpredicts the second virial

coefficient for large molecular weights. As a result, the TPT equation of state does not yield the

correct universal form for dilute to semidilute solutions of high molecular weight polymers (see

Eq. (19)). This conclusion applies to all equations of state that possess a second virial coefficient

that scales with molecular weight as B2 ∝ N2. Thus, these types of equations of state cannot

properly describe the behavior of dilute to semidilute polymer systems.
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l

σ

Fig. 1: Schematic drawing of a four-arm (f = 4) star polymer with N = 5 spheres per arm. The

diameter of the spheres is σ, and the bond length is l. The shaded sphere is the central “core”

sphere.
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Fig. 2: Mean square end-to-end distance, 〈R2〉, for various hard-sphere chains: (i) σ/l = 1 (filled

circles), (ii) σ/l = 0.548 (filled triangles), (iii) σ/l = 0.447 (crosses), (iv) σ/l = 0.316 (open

triangles), and (v) σ/l = 0 (pluses), (vi) tetrahedral lattice chains [23] (diamonds), (vii) sc lattice

chains [24] (open circles), (viii) sc lattice chains [25] (squares), (ix) Gaussian limit (short-dashed

line), and (x) Kuhninan limit (long-dashed line).
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Fig. 3: Variation of the scaled mean-square end-to-end and center-to-end distances with N̄ for

polymers with ū < 1: (i) Monte Carlo simulation data (symbols), (ii) crossover theory, Eqs. (10)–

(12), with e1 = −0.125 and e2 = 0.283 (solid line).
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Fig. 4: Variation of the penetration function with the degree of polymerization N for three-arm

stars: (i) σ/l = 0.3 (circles), (ii) σ/l = 0.447 (squares), and (iii) σ/l = 1.0 (triangles).
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Fig. 5: Variation of the infinite-molecular-weight limit of the penetration function Ψ∗(f) for star

polymers with f arms: (i) simulation data (symbols), (ii) calculated values from Eq. (17) (solid

line), and (iii) calculated values of Douglas and Freed (dashed line).

19



-5 -3 -1 1 3 5 7 9 11
log10(fN/N*)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
en

et
ra

tio
n 

F
un

ct
io

n,
 Ψ

/Ψ
∗

f=1
f=2
f=3
f=4
f=5
f=6
f=1
f=6

Fig. 6: Variation of the rescaled penetration function Ψ̄(N̄ , f) = Ψ(N̄ , f)/Ψ∗(f) with the rescaled

degree of polymerization N̄ = fN/N ∗: (i) simulation data (open symbols), (ii) rescaled simulation

data (filled symbols), and (iii) calculated values (lines).
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Fig. 7: Deviation of the equation of state from the infinite molecular weight limit: (i) Ψ̄ = 1,

infinite molecular weight limit (solid line), (ii) Ψ̄ > 1, stiff polymer of finite molecular weight

(dashed lines), and (iii) Ψ̄ < 1, flexible polymer of finite molecular weight (dotted lines)

21



0.0 0.1 0.2 0.3 0.4 0.5

y

0

200

400

600

800

1000

1200

1400

Z

Fig. 8: Equation of state for tangent hard-sphere chains of various degrees of polymerization.

The symbols are the results of computer simulations for: (i) N = 51, Ref. [26] (circles), and (ii)

N = 201, Ref. [26] (squares). The solid lines are the predictions of Eq. (21), and the dashed lines

are the predictions of the TPT equation of state.
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Fig. 9: Equation of state of tangent hard-sphere chains in the dilute to concentrated regimes. The

symbols are the results of computer simulations for N = 100 (circles), N = 200 (squares), and

N = 500 (triangles). The open symbols represent systems in the dilute/semidilute regimes, and

the filled symbols represent systems in the concentrated regime. The lines are the predictions of

Eq. (21) for: N = 100 (solid line), N = 200 (dashed line), N = 500 (dotted line), and N → ∞

(dash-dotted line).
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Fig. 10: Equation of state of tangent hard-sphere chains in the dilute to concentrated regimes. The

symbols are the results of computer simulations for N = 100 (circles), N = 200 (squares), and

N = 500 (triangles). The open symbols represent systems in the dilute/semidilute regimes, and

the filled symbols represent systems in the concentrated regime. The lines are the predictions of

the TPT equation of state for: N = 100 (solid line), N = 200 (dashed line), and N = 500 (dotted

line).
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