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ABSTRACT

We report measurements of drift mobility µ of excess electrons in dense Argon gas

in proximity of the critical point of the liquid–vapor transition. We investigated the

density and electric field dependence of µ at two temperatures fairly close to the

critical one, namely T = 162.30 K (T/Tc ≈ 1.08) and T = 152.15 K (T/Tc ≈ 1.01)

(Tc = 150.7 K) in a density range (0.5 ≤ N ≤ 14) atoms·nm3 (0.06 ≤ N/Nc ≤

1.73), encompassing the critical region of Ar (Nc = 8.08 atoms·nm−3). At the lowest

temperature we observed a maximum of the zero–field density–normalized mobility

µ0N at the same density where it was observed in the liquid. We show that a

density–modified kinetic model describes well all features of µ in the gas phase even

at densities comparable to those of the liquid. We therefore argue that the electron

scattering processes in the liquid phase could be described in terms of kinetic theory

rather than in terms of the usual deformation potential model.

KEY WORDS: excess electrons, drift mobility, multiple scattering effects, kinetic

theory, deformation potential theory.
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1. INTRODUCTION

The investigation of the transport properties of excess electrons in dense non–

polar gases provides the opportunity to study the effect of the environment on the

electron–atom interaction in a disordered system. Close to the critical point the gas

density can be largely varied with a reasonable change of pressure, so we can shed

light on the nature and dynamics of the states of excess electrons in dense fluids and

on how they evolve from the dilute gas regime, where the kinetic theory is valid,

towards the liquid regime.

An important quantity is the electron mobility µ defined as the ratio between

the mean velocity vD acquired by an electron drifting in a medium under the action

of an externally applied and uniform electric field and the field strength E : µ =

vD/E. The kinetic theory, valid for dilute gases, predicts that the zero–field mobility

µ0 (defined as µ0 = lim
E→0

µ) is related to the e−atom scattering cross section for

momentum transfer σmt by

µ0N =
4e

3 (2πm)1/2 (kBT )5/2

∞∫
0

ε

σmt (ε)
e−ε/kBT dε (1)

where m and e are the electron mass and charge, respectively, ε is the electron

energy, N is the gas density, and kB is the Boltzmann constant [1].

For a given cross section, Eq. (1) predicts that the zero–field density–normalized

mobility µ0N is independent of N. However, large deviations from this prediction,

called anomalous density effects, are experimentally observed even in the simplest

systems such as the noble gases [2]. In He [3] and Ne [4], where the e−atom in-

teraction is dominated by short–range repulsive forces, there is a negative density

effect, i.e., µ0N decreases with increasing N, eventually leading to the formation of

localized electron states at high enough densities and in the liquid.

In Ar, on the contrary, where the long–range polarization interaction is very

strong, there is a positive density effect because µ0N increases with N [5]. Moreover,

in liquid Ar and liquified heavier noble gases, the mobility is comparable to that in
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the crystalline state [6]. This behavior is commonly attributed to the existence

of a conduction band in the liquid. Therefore, it is interesting to investigate the

transition from the classical single scattering picture in the dilute gas to multiple

scattering at higher densities and the eventual formation of extended or localized

electron states in the liquid.

In order to explain the anomalous density effects several theories have been

developed in the past. They all are based on the realization that at high densities

the average interatomic distance becomes comparable to the deBroglie wavelength

λ of the electron. Therefore, the classical picture of scattering breaks down and

quantum effects become important. Moreover, also the mean free path ` becomes

comparable to λ and multiple scattering effects come into play [2].

Although the physical situation seems clear, nonetheless the two density effects

were explained in terms of different mechanisms. For the negative one it was as-

sumed that there is an increase of the electron scattering rate with increasing N

because the electron mean free path is becoming comparable to its wavelength. The

electron wavepacket is multiply scattered off several scattering centers and under-

goes a quantum self–interference process that reduces its mobility. At particularly

high densities this process eventually leads to the formation of a mobility edge and

to localized electron states [7].

For the positive effect, on the contrary, a complex and density–dependent quan-

tum shift of the ground state energy of the excess electrons in the dense medium

is taken into account. This shift increases the average energy of the electron and,

owing to the energy dependence of the atomic cross section, decreases the scattering

rate [8].

However, recent and accurate mobility measurements in Ne [4, 9] and Ar [10, 11]

and their analysis have led to an unified description of the scattering of excess

electrons off atoms of noble gases at high densities. A heuristic model, known as

the BSL model, has been developed, which incorporates the most relevant multiple
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scattering effects into the single scattering picture of kinetic theory [10].

Three main multiple scattering effects can be singled out, whose net effect is to

dress the atomic cross section producing a density–dependent effective cross section.

The first one is a density–dependent shift V0(N) of the ground–state energy of an

excess electron in the medium. According to the SJC model V0(N) consists of two

contributions [12]

V0 (N) = UP (N) + Ek (N) (2)

UP is a negative potential energy term arising from the screened polarization interac-

tion of the electron with the gas atoms. Ek is a positive kinetic energy contribution

due to excluded volume effects (and, hence, it increases with N) and is obtained

by imposing on the electron ground–state wavefunction the conditions of average

traslational simmetry about the equivalent Wigner–Seitz (WS) cell centered about

each atom. V0 may be either > 0 (as for He [13] and Ne) or < 0 (as for Ar [14, 15]),

depending on the relative size of UP and Ek, but only the positive kinetic contribu-

tion Ek must be added to the electron kinetic energy when the scattering properties

(e.g., the scattering cross sections) have to be evaluated. In other words, the electron

energy distribution function is shifted to higher energies by the amount Ek [9].

The second effect is an enhancement of the electron scattering rate due to quan-

tum self–interference of the electron wavefunction scattered off atoms along paths

connected by time–reversal simmetry [16]. This effect is intimately related to the

weak localization regime of the electronic conduction in disordered solids and to

the Anderson localization transition [17]. It depends on the ratio of the electron

wavelength to its mean free path λ/` = Nσmtλ. In the case of Ar, Nσmtλ < 1 and

the effect can be treated within the linearized AI model [18], where the momentun

transfer cross section is enhanced by the factor 1 + Nσmtλ/π.

Finally, the third multiple scattering effect arises from correlations among scat-

terers. The electron wavepacket spans over a region containing several atoms and is

scattered off all of them simultaneously. The partial scattering amplitudes must be
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summed coherently in order to get the total scattered wavepacket and the net result

is that the cross section must be suitably weighted by the static structure factor of

the fluid which is related to the gas compressibility [19].

In our modified kinetic model (or, BSL model) the density–normalized mobility

µN is calculated according to the following equations [10]

µN = −
(

e

3

)(
2

m

)1/2 ∞∫
0

ε

σ?
mt (ε + Ek)

dg

dε
dε (3)

g(ε) is the Davydov–Pidduck electron energy distribution function given by [20, 21]

g (ε) = A exp

−
∞∫
0

kBT +
M

6mz

(
eE

Nσ?
mt

)2
−1

dz

 (4)

M is the Ar atomic mass. g is normalized as
∫∞
0 z1/2g (z) dz = 1.

The effective momentum transfer scattering cross section is

σ?
mt (w) = F (w) σmt (w)

[
1 +

2h̄NF (w) σmt (w)

(2mw)1/2

]
(5)

Here w = ε + Ek(N) is the electron energy shifted by the kinetic zero–energy con-

tribution Ek. It is the group velocity v = [2(w−Ek)/m]1/2 which contributes to the

energy equipartition value arising from the gas temperature [21]. The factor F is

the Lekner factor [19] that accounts for the correlations among scatterers

F (k) =
1

4k4

2k∫
0

q3S(q) dq (6)

with k2 = 2mε/h̄2. The static structure factor S(q) in the near–critical region has

the form [22]

S (q) =
S (0) + (qL)2

1 + (qL)2 (7)

where S(0) is related to the gas isothermal compressibility χT by the relation

S (0) = NkBTχT (8)

The correlation length L is defined by

L2 = 0.1l2 [S (0)− 1] (9)
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where l ≈ 10 Å is the so–called short–range correlation length [22].

From the experiments with Ne [4, 9] and Ar [10] (here, at T = 162.7 K up to

N/Nc ≈ 0.88) we found that the kinetic energy shift can be quite accurately calcu-

lated according to the WS model as Ek = EWS ≡ h̄2k2
0/2m, where k0 is obtained by

solving the eigenvalue equation

tan [k0 (rs − ã (k0))]− k0rs = 0 (10)

rs = (3/4πN)1/3 is the radius of the WS cell and ã is the hard–core radius of the

Hartree–Fock potential for rare gas atoms. In our model, according to a suggestion

found in literature [12], we have estimated ã from the total scattering cross section

as ã =
√

σT /4π.

The BSL model is in excellent agreement with data in Ar gas also at T = 152.5 K

and up to N ≈ 10 atoms ·nm3, provided that one realizes that the WS model is inap-

propriate for very high N and that Ek must be deduced from the experiment [11].

Obviously, the question arises if the BSL model has been pushed beyond its limits

of applicability or if different physical mechanisms set in for momentum transfer

processes at such large N. Indeed, in liquid Ar a maximum of the mobility of ther-

mal electrons has been observed at the density where V0 is minimum [23]. This

mobility maximum has been interpreted in terms of the deformation potential the-

ory as due to electrons scattering off long–wavelength collective modes of the fluid

which modulate the bottom V0 of the conduction band. The spatial inhomogene-

ity of the electron ground–state energy is the source of scattering. This phononic

model [23, 24] predicts the existence of the mobility maximum in Ar at the correct

value N ≈ 12.5 atoms · nm3, but it fails to predict the density– and the electric field

dependence of µN as the BSL model does. For these reasons, we have extended the

mobility measurements in Ar gas at T = 152.15 K up to N ≈ 14 atoms · nm3 in

order to ascertain if the mobility maximum is a feature typical of the liquid only or

if it can be observed also in the gas phase. In this case there could be strong reasons

to extend the kinetic picture of scattering even to the liquid [25].
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2. EXPERIMENT

We used the same pulsed photoinjection technique already employed for electron

and O−2 ion mobility measurements in dense noble gases Ne [9, 26], He[27, 28], and

Ar [29]. We refer to literature for details. We recall here only the main features

of the apparatus. The measuring cell is mounted in a triple–shield cryostat and is

thermoregulated within ±0.01 K. The temperature is measured with a calibrated

Pt resistor. The cell withstands pressures up to 10 MPa. The gas pressure P is

measured with an uncertainty of ±1 kPa. The gas density N is calculated from T

and P by using a recent and accurate equation of state [30]. We used Argon gas

with a nominal impurity content, mainly Oxygen, of ≈ 1 p.p.m. The impurity level

is reduced to a fraction of a p.p.b. by recirculating the gas through a purification cir-

cuit consisting of an activated–charcoal cold trap and an Oxisorb purifier cartridge.

Electrons are photoinjected into the gap between two parallel–plate electrodes and

drift under the influence of an externally applied electric field. During the drift

motion they induce a current in the external circuit. The current is integrated by

means of a passive RC circuit in order to improve the signal–to–noise ratio. The

electron drift time τ is measured by analyzing the signal waveform [31]. The mobil-

ity is calculated from t as µ = d2/τV, where d is the electrode spacing and V is the

applied voltage. The estimated uncertainty on µ is ≈ 5 %.

3. RESULTS AND DISCUSSION

Measurements were taken at T = 162.30 K and T = 152.15 K. In Fig. 1 we show

sample µN data as a function of the reduced electric field E/N at T = 152.15 K. For

small E/N µN levels off at the zero–field value µ0N pertaining to thermal electrons.

At small and medium densities µN shows the maximum due to the Ramsauer–

Townsend (RT) minimum of the cross section [32] for E/N = (E/N)max ≈ 4 ×

10−24 V cm2. Then, for large E/N the curves for all densities collapse onto a single

curve well described by the kinetic equations [1] in combination with the measured
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Figure 1: µN as a function of E/N for T = 152.15 K. The densities are (from top)
N = 10.40, 10.16, 9.935, 9.352, 8.048, 6.708, 6.146, 3.117, 1.097 atoms · nm−3.

cross sections [32]. In the frame of the BSL model this behavior is clearly understood.

At small energies (hence, at low fields) the extension of the wavepacket, as measured

by its wavelength λ = h/
√

2mε, is pretty large. As the average electron energy

is increased by increasing E/N, the wavepacket shrinks and the effects of multiple

scattering decrease. Therefore, the experimental points for large E/N must converge

to the prediction of the classical kinetic theory.

The coordinate of the mobility maximum (E/N)max decreases with increasing

N until the maximum itself disappears for N ≥ Nc, as shown in Fig. 2. Also

this behavior is quite easily understood. At (E/N)max the average electron energy

equals the energy of the RT minimum of the cross section 〈ε〉 = εRT . Since 〈ε〉 =

(3/2)kBT +Ek(N)+ f(E/N), where f(E/N) is a monotonically increasing function

of E/N [1], and since Ek increases with N, (E/N)max must decrease in order to keep

〈ε〉 = εRT constant when N increases. Finally, for even larger N the electron energy

distribution function is so shifted by Ek as to sample the cross section at ε > εRT
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Figure 2: Decrease of (E/N)max with increasing N for T = 152.15 K. The line is a guide
for the eye.

and the mobility maximum as a function of E/N disappears.

In Fig. 3 we show the zero–field density–normalized mobility µ0N as a function

of N for T = 162.3 K and T = 152.15 K. Also previous data at T = 162.7 K [10]

are shown for comparison. Two are the most important features shown by data in

Fig. 3. The first one is that, for small to medium N, µ0N increases with N for both

temperatures. Again, this fact is easily explained by the BSL model. At E/N → 0

electrons do not practically gain energy from the electric field and therefore their

average energy is 〈ε〉 � εRT . In this region σmt decreases rapidly with increasing

energy [32]. Since µ0N is a sort of weighted average of the inverse cross section, as

expressed by Eq. (1), to a first approximation it can be calculated by evaluating

1/σmt at the average energy. So, µ0N can increase with N only if 〈ε〉 increases

with N, owing to the shape of the cross section. This fact strongly supports the

conclusion that there is a density–dependent shift of the electron kinetic energy and

that this shift is positive and increases with density.

The second most important feature is the existence, for T = 152.15 K, of a

maximum of µ0N at N = Nm ≈ 12.5 atoms · nm−3, at nearly the same density as
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Figure 3: µ0N as a function of the density for T = 162.5, 162.3, and 152.15 K.

observed in the liquid. The presence of this µ0N maximum for N = Nm also in the

dense gas raises the question if there is a change in the physical mechanisms deter-

mining the electron transport properties an N increases beyond a certain threshold.

At low and medium N the single scatterer approximation is valid and electrons can

be described as scattered off individual atoms though the scattering properties must

be modified so as to include multiple scattering effects. As N increases electrons

might be scattered off collective excitations of the fluid. However, there are several

reasons to extend the kinetic picture rather than to adopt the different point of view

of the deformation potential models. First of all, a gas, even at such high N, does

not support phonons. Then, the phononic models do not agree very well with the

experiment [14, 24] and, moreover, they do not allow the calculation of the very

important E/N−dependence of µN because they are developed only for thermal

electrons.

We have therefore implemented the BSL model for such high N. We have deter-

mined Ek(N) by fitting Eq. (3)–(7) with E/N = 0 to the experimental µ0N data.

We used literature data for the cross sections [32]. In Fig. 4 we show the values of

Ek(N) obtained in this way and compare them with the prediction of the WS model
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Figure 4: Ek as a function of N. Open squares: T = 162.7 K [10], open circles: T = 162.3
K, closed points: T = 152.15K. The line is Eq. (10).

Eq. (10). Also previous results for T = 162.7 K are shown for comparison [10].

Beside the small differences obtained for the two different temperatures, which may

be attributed to the larger compressibility for the temperature closer to Tc, the ex-

perimentally determined values of Ek agree quite well with the prediction of the WS

model up to N ≈ 7 atoms · nm−3, as already pointed out in the previous esperiment

on Ar [10]. For larger N Ek increases faster with N than in the WS model. This

is not surprising because it is known that the WS model is applicable only when

rs � ã. If we relax the condition that the WS model is valid up to very high N and

use the Ek values determined experimentally from µ0N, the BSL model reproduces

accurately the experimental data up to N ≈ 10 atoms · nm−3. In this density range

the BSL model shows a very good degree of internal consistency because the full

E/N−dependence of µN is well reproduced by using the value of Ek determined

by fitting the model to the zero–field data, as shown in Fig. 5 by the dotted lines.

At small and medium N the position and strength of the mobility maximum as a

function of the reduced electric field is reproduced quite accurately as well as its

disappearing when N increases. This also confirms the hypothesis that the density–
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Figure 5: µN as a function of E/N for T = 152.15 K. From top: N =
13.33, 9.935, 5.144, 0.502 atoms · nm3. Dotted lines: prediction of the BSL. Solid lines:
calculations with σeff .

dependent kinetic energy shift Ek is so large as to shift the average electron energy

to values ≥ εRT .

In this form, however, the model does not reproduce the µ0N maximum for

N = Nm ≈ 12.5 atoms · nm3, although the overall behavior can be traced back to

the density–dependent quantum shift of the electron energy distribution function

and on the shape of the cross section. On one hand, the scattering cross sections are

known with limited accuracy as far as the strength and position of the RT minimum

are concerned. Different choices of σmt give different strength and position values of

the µ0N maximum [11]. On the other hand, the use of an effective scattering cross

section may give excellent agreement with the data, as pointed out in literature

[11, 25]. The E/N−dependence of µN and the N−dependence of µ0N at very high

N can be accurately described if the effective cross section σ?
mt of Eq. (5) is scaled

by a density dependent factor c(N) of order unity. c(N) is an adjustable parameter

but is independent of E/N and of the electron energy. It has therefore no influence

on the E/N−dependence of µN. When introducing c(N) the energy shift Ek(N) is

no longer considered as an empirical parameter, but it is rather set equal to the WS

12



value EWS given by Eq. (10). By subsituting σ?
mt in Eq. (3) by σeff = c(N)σ?

mt,

with c = O(1), the E/N−dependence of µN is reproduced very well as shown by

the solid lines in Fig. 5.

The shape of the effective cross section σeff at thermal energy is shown in Fig. 6

as a function of the electron energy. Also the atomic momentum transfer cross

section [32] is shown for a comparison. In order to plot σeff (N) = c(N)σ?
mt(ε =

(3/2)kBT + Ews) and σmt(ε) on the same scale the density has been converted to

energy by means of the WS model Eq. (10).

0.06

0.08

0.1

0.3

0.5

160 180 200 220 240 260 280

σ ef
f, 1

0-2
0  m

2

ε, meV

Figure 6: Comparison between σeff (dots) and σmt [32] (solid line). N has been converted
to ε by means of Eq. (10).

It is remarkable the similarity of σeff to the e−atom cross section of Ar. Similarly

to its atomic companion, σeff has a minimum surely related to the RT minimum

of σmt. Also the strength of σeff is close to that of σmt, although the minimum

occurs at lower energies and is narrower. This is probably due to the use of Eq.

(10) for the N → ε conversion. As one can see from Fig. 4, Ews is smaller than

the experimentally determined Ek. The use of the experimental Ek instead of Ews

would broaden the minimum of σeff and shift it to larger energies.

In any case, taking into account the limited accuracy of the atomic cross section,

the use of an approximated form F(ε) of an energy–dependent structure function,
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the neglect of a density dependence of the electron mass, i.e., an effective mass,

and the neglect of the influence of density fluctuations on the distribution function,

the results are very encouraging. They give firm basis to the attempts of using the

kinetic theory even in the liquids [25] although these results claim for more refined

theoretical models.
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