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Abstract

The current well-known excess Gibbs free energy functions that combine
with cubic equations of state are all reduced to the ideal solution functions.  A
new class of excess Gibbs free energy function which reduces to the van der
Waals one-fluid mixing rule is introduced for application to various
asymmetric, highly non-ideal chemical systems.  The incorporation of this new
excess Gibbs free energy function into a cubic equation of state allows the
CEOS/AE mixing rule to smoothly transition to the conventional van der Waals
one-fluid mixing rules.  It is well known that equations of state with van der
Waals mixing rules work well for non-polar systems, it is therefore desirable
that the composition dependent excess Gibbs free energy function reduce to that
of the van der Waals fluid.  Introducing this capability into a Gibbs energy
model ensures the binary interaction parameters for the classical quadratic
mixing rules available in many existing databanks for systems involving
hydrocarbons and gases can be used directly in the new excess Gibbs function.
The new liquid activity coefficient model is an ideal GE function and is
combined with an equation of state to handle non-ideal systems while still
retaining the equation of state capability to handle non-polar systems in the
accurate prediction of high pressure and high temperature phase equilibria.
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Introduction

Cubic equations of state have seen widespread use in the petroleum and
refining industries for the calculation of vapor-liquid equilibrium (VLE) ever
since Soave [1] successfully developed a generalized alpha function for cubic
equations of state.  To apply cubic equations of state to more complex phase
behavior a more flexible composition-dependent mixing rule other than the van
der Waals one-fluid mixing rule is needed.

The modern development of combining cubic equation of states with excess
Helmholtz or excess Gibbs energy models has advanced the CEOS such that  its
is now an accepted and effective method for correlating and predicting phase
equilibrium behavior of highly non-ideal systems.  While conventional excess
energy mixing rules have been successfully applied to strongly polar systems,
the results obtained for non-polar systems are no better than the van der Waals
one-fluid mixing rules, even though they use more binary parameters [2].  In
comparison, systems containing non-polar components and light gases are
usually well represented by cubic equations of state using van der Waals one-
fluid mixing rules and only one or two parameters per binary.

In an effort to reduce the excess energy mixing rules to the conventional
vdW mixing rules, Huron and Vidal [3] and Orbey and Sandler [4] modify the
GE model of NRTL, for example, to a different form.  Since the excess Gibbs
energy model is now a modification of the original NRTL equation, the NRTL
parameters reported in the DECHEMA Chemistry Data Series can no longer be
used in the mixing rules.  Another problem of modified activity models is the
requirement  that the new model at least give equal to or better correlative and
predictive results than the original one.

This paper presents an infinite-pressure mixing rule that also includes an
excess Gibbs energy function that uses existing NRTL parameters for highly
non-ideal binary-pairs.  However, in addition to using existing GE databases,
the activity coefficient model presented here also uses the binary-interaction-
parameter kij of conventional van der Waals one-fluid mixing rules in the same
mixture.  This can be useful for systems where only some of the binary pairs
require the use of a CEOS/AE mixing rule or an activity model, while other
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binary pairs can be described adequately by the van der Waals one-fluid mixing
rules.

Infinite-Pressure CEOS/AE Mixing Rules

The cubic equation of state infinite-pressure mixing rules have been shown
to have remarkable extrapolative powers.  Many authors have demonstrated that
parameters in activity coefficient models correlated at low temperatures can be
used effectively to extrapolate to much higher temperatures.  Twu and Coon [5]
using a van der Waals mixture as the reference fluid derived the following
infinite-pressure mixing rules for the cubic equation of state mixture a and b
parameters:
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The C1 parameter in eqs.(1) and (2) is a constant and is defined as:
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where u and w are equation of state dependent constants used to represent a
particular two-parameter cubic equation of state (for the SRK equation: u=0,
w=1 and for the PR equation: u = -0.4142, w = 2.4141).

A∞
E in eqs.(1) and (2) is the excess Helmholtz energy at infinite pressure.

The subscript vdw in A∞
E

vdw denotes properties evaluated from a cubic equation
of state using the van der Waals mixing rules for its a and b parameters.  Twu-
Coon mixing rules reduce to the van der Waals mixing rules if A∞

E equals to
A∞

E
vdw.  As mentioned previously, it is desirable to have a mixing rule using the

same Gibbs free energy expression that can reduce to the classical van der
Waals one-fluid mixing rule.
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It is worth mentioning that we use the excess Helmholtz energy AE approach
to derive eqs.(1) and (2).  The equations can also be expressed in terms of
excess Gibbs energy GE where AE and GE are related in the development below.
The Helmholtz energy departure function, ∆A, is related to the excess
Helmholtz energy, AE, and the departure functions of the pure components i,
∆Ai, at the same temperature, pressure, and composition by:

A A x AE
i

i

n

i= − ∑∆ ∆ (4)

A similar relation to eq.(4) is true for the Gibbs free energy:

i

n

i
i
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To relate the Helmholtz energy of eq.(4) to the Gibbs energy of eq.(5), the
following relationship between the Helmholtz energy departure function, ∆A,
and the Gibbs energy departure function, ∆G, are needed:

)1Z(RTGA −−= ∆∆ (6)

Eqs.(4) to (6) provide the connection between excess Helmholtz energy and
excess Gibbs energy.  Subtracting eq.(5) from (4) gives:
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Using eq.(6) two times in eq.(7), once for the mixture and once for the pure
component i, we have:
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Applying eq.(8) to a van der Waals fluid and then subtracting it from eq.(8) we
get:
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In the limit of infinite pressure, P→∞, v approaches b and vvdw approaches
bvdw.  Z becomes Zvdw if the van der Waals mixing rule bvdw is used for the b
parameter.  The last two terms in eq.(9) cancel out so that we get:
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The above derivation shows that the approach of using the excess Gibbs
energy requires the b parameter to be bvdw while using the excess Helmholtz
energy approach releases the equation of state b parameter from its traditional
linear mixing rule.  This shows that the excess Helmholtz energy approach is a
more concise way in the development of mixing rules than the excess Gibbs
energy approach.

Our current infinite pressure mixing rule model assumes constant (pressure-
independent) excess Helmholtz free energy to permit the use of an appropriate
GE correlation at low temperatures into the mixing rule.  Any GE model, such as
the NRTL equation, can then be directly incorporated into our mixing rules for
phase equilibrium calculations. To correct the approximation that the excess
Helmholtz free energy at infinite pressure equal the excess Gibbs free energy at
low pressure, the binary interaction parameter, kij is introduced:
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The conventional linear mixing rule meanwhile is used for the van der Waals
b parameter:
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Eq.(11) assumes kij = kji.  However, they are generally not equal.  To improve

the accuracy and reproduction of the incorporated GE model, the asymmetric
van der Waals mixing rule for the avdw parameter is required:
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Eq.(13) has two adjustable parameters, kij and kji.  The use of an asymmetric
definition of kij in the mixing rule of eq.(13) is similar to the asymmetric Aij in

the GE mixing rule of the NRTL model.  The reason for using an asymmetric Aij

is that there are two infinite dilution activity coefficients per binary and two
parameters are required to match exactly the two infinite dilution activity
coefficients.  Eq.(13) contains one more parameter than eq.(11).  However, as
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pointed out by Wong et al.[6], if these two parameters could be derived from
reported parameters of the activity coefficient model instead of additional data
or a correlation, then kij and kji in eq.(13) require no additional data or

regression.  Eq.(13) essentially has the same number of adjustable parameters
as the eq.(11).  If kij = kji, eq.(13) reduces to the conventional van der Waals

mixing rule eq.(11).

Eq.(2) satisfies the second virial coefficient constraint, but unfortunately it is
temperature dependent.  Alternatively, a temperature independent, linear
mixing rule can be used for the equation of state parameter b:
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For the same reason as introducing kij, the binary interaction parameter lij is

introduced in b to correct the assumption made for the excess Helmholtz free
energy at infinite pressure.  We will test eq.(14) against eq.(2) in the phase
equilibrium calculations.

A New Liquid Activity Coefficient Model

We now consider a new model for the excess Gibbs free energy that allows
our mixing rule to reduce to the van der Waals one-fluid mixing rule.  To do
this we first investigate the term A∞

E
vdw in both eqs.(1) and (2).  A∞

E
vdw can be

derived from the equation of state for a van der Waals fluid at infinite pressure:
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The equations for avdw and bvdw are given by eqs.(11) and (12).  For
simplicity, we limit the following discussion to binary mixtures.  We obtain the
following expression for the excess Helmholtz energy of a van der Waals fluid:
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δ12 is a characteristic parameter of interaction between molecules 1 and 2.
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Extending the relations to a multi-component mixture, eqs.(16) and (17)
become:
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It is interesting to note that eq.(18) is also related to eq.(15).  Eq.(18) is the
result of a van der Waals fluid satisfying the van der Waals one-fluid mixing
rules.  Note we mentioned that the excess Helmholtz free energy at infinite
pressure is approximated by the excess Gibbs free energy at low pressure.
Consequently, if we propose an expression in our mixing rule for the excess
Helmholtz (or Gibbs) energy which reduces to eq.(18), we will obtain the
conventional van der Waals one-fluid mixing rule.

A general multi-component equation for a liquid activity model is now
proposed for incorporation into the infinite-pressure mixing rules:
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Eq.(21) appears to be similar to the NRTL equation, but there is a
fundamental difference behind each of them.  NRTL assumes Aij, Aji, and αij are
the parameters of the model, but our excess Gibbs free energy model assumes
τij and Gij are the binary interaction parameters.  More importantly, any
appropriate temperature-dependent function can be applied to τij and Gij.  For
example, to obtain the NRTL model, τij and Gij are calculated as usual from the
NRTL parameters Aij, Aji and αij:
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T

Aij
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In this way, the NRTL parameters reported in the DECHEMA Chemistry
Data Series can be used directly in our mixing rules, there is no difference
between NRTL and our model in the prediction of phase equilibrium
calculations.

We also note eq.(21) can recover the conventional van der Waals mixing
rules when the following expressions are used for τij and Gij:

iijij bδτ
2

1= (24)

i

j
ij b

bG = (25)

Eqs.(24) and (25) are expressed in terms of cubic equation of state
parameters, ai and bi and the binary interaction parameter kij.  Substituting
eqs.(24) and (25) into (21), eq.(18) is thus obtained and subsequently our
mixing rules, (1) and (2), reduce to the classical van der Waals one-fluid mixing
rules.  The discussion above demonstrates that eq.(21) is more generic in form
than NRTL.  Both the NRTL and van der Waals fluid parameters are special
cases of our excess Gibbs free energy function.

It is important to emphasize that both van der Waals fluids and highly non-
ideal mixtures can now be described by the same Gibbs excess energy model
proposed here.  More significantly, multicomponent mixtures containing both
types of binaries can be described in a unified framework.  We can choose the
appropriate expressions for τij and Gij from eqs.(24) and (25) for binary pairs
which are best described by vdW one-fluid mixing rules, while eqs.(22) and
(23) can be used for pairs which behave non-ideally.  Therefore the activity
model is able to describe systems ranging from mixtures of simple
hydrocarbons to highly non-ideal mixtures of organic chemicals and water over
a broad range of temperatures and pressures in a consistent and unified
framework.
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Results

We have chosen the Twu et al. [7] form of the SRK cubic equation of state
and our activity model eq.(21) here for illustration purposes.  The equation for
parameter a is a function of temperature.  The value of a(T) at temperatures
other than the critical temperature can be calculated from:

ca )T( = )T(a α (26)

where the alpha function, α(T), is a function only of reduced temperature,
Tr=T/Tc.  We use the alpha correlation of Twu et al. [7]:

)T1(L)1M(N
r

MN
reT)T( −−=αααα (27)

Eq.(27) has three parameters, L, M, and N.  These parameters are unique to
each component and are determined from the regression of pure component
vapor pressure data.  The L, M, and N parameters used to get the correct pure
component vapor pressure for all pure components used in this paper are listed
in Table 1 for use with the SRK equation.

We want to investigate the impact of using different mixing rules for b
parameter on phase equilibrium calculations.  Since the Wong-Sandler [WS(b)]
mixing rule has been shown to have exceptional success in phase equilibrium
calcuations, their mixing rule is selected and compared with ours.  We label
eqs.(1), (2), (12), (13) and (21) the Twu-Sim-Tassone [TST(b)] mixing rule and
label eqs.(1), (14) and (21) the Twu-Sim-Tassone [TST(bvdw)] mixing rule.  The
‘(b)’ in WS(b) and TST(b) indicates that the mixing rule satisfies the second
virial coefficient constraint but is temperature dependent.  The ‘(bvdw)’ in
TST(bvdw) indicates that the temperature-independent van der Waals mixing
rule bvdw is used for the b parameter.  It is worth noting that the Wong-Sandler
mixing rule WS(b) is a special case of our mixing rule TST(b).

We have considered twelve highly non-ideal binary mixtures, which are
traditionally described by liquid activity models.  They are listed in Table 2.
Since our mixing rule exactly reduces to the vdW one-fluid mixing rule, none
of our tests are for mixtures of hydrocarbons that are known to be adequately
described by that model.  We will use only the activity coefficient parameters at
the lowest isothermal temperature to predict high-pressure phase behavior for
these non-ideal systems.  Table 2 gives the values of these NRTL binary



10

interaction parameters for these systems.  The accuracy of reproducing the
activity coefficients of component i, γi (%) in terms of average absolute
deviation percentage (AAD%), from WS(b), TST(b) and TST(bvdw) mixing
rules is given in Table 2.  Similarly, the accuracy of VLE predictions from
these three mixing rules, which is also in terms of AAD% in the bubble point
pressure and the K-values of component 1 and 2, is also presented in Table 2.

Examining the accuracy of reproducing activity coefficients as given in
Table 2 shows that the result of reproducing GE model behavior from the
Wong-Sandler mixing rule is good, but in general is still not quite accurate
enough.  On the other hand, our mixing rule TST(b) improves significantly the
accuracy of reproducing activity coefficients over WS(b) for almost all cases.
Our model, TST(bvdw), without temperature dependency, reproduces the GE

model behavior with similar accuracy as when using WS(b).

The three mixing rules are also compared in the calculation of VLE.  The
binary interaction parameters, k

ij
 or l

ij
, are derived from information obtained

from the NRTL model itself.  When the parameters are derived from the excess
free energy model, the mixing rules can be considered containing the same
number of parameters as the incorporated liquid activity coefficient model.
Table 2 gives the results of binary interaction parameters for each binary and
the accuracy of the prediction.  Comparing the results shown in Table 2 indicate
that all three mixing rules produce similarly high accuracy in predicting data
covering wide ranges of temperature and pressure in the bubble point pressure
and K-values of components for highly non-ideal systems.

The results also show that the mixing rule either with or without second
virial coefficient condition constraint yields almost identical results.  The
second virial coefficient constraint has little effect on the phase equilibrium
prediction.  Theoretically, it would be nice to have a mixing rule that satisfies
the quadratic composition dependence of the second virial coefficient boundary
condition.  Practically, it is simpler just to use the conventional linear mixing
rule for the b parameter.  It will not only predict the same quality of phase
behavior, but also avoid any potential problems in the prediction of other
thermodynamic properties at extremely high pressures.
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Conclusions

It is extremely desirable to have a mixing rule that incorporates an excess
Gibbs energy expression which transitions smoothly to the conventional van
der Waals one-fluid mixing rules.  This is important because the same mixing
rule can be applied to all binaries, whether components are polars, nonpolars,
inorganic gases, or any combination of these.  A new class of excess Gibbs free
energy function is proposed in this work for this purpose.  The incorporation of
the proposed new excess Gibbs free energy function into a cubic equation of
state allows the CEOS/AE mixing rule to smoothly transition to the classical
vdW one-fluid mixing rules.  We demonstrate that the cubic equation of state
with the proposed excess Gibbs energy mixing rules can be applied with high
accuracy to the prediction of phase equilibria using available parameters for the
liquid activity coefficient model.  Subsequent work will present a new excess
Gibbs energy function for zero-pressure mixing rules.

List of Symbols

a, b cubic equation of state parameters
a*, b* defined as Pa/R2T2 and Pb/RT, respectively
A Helmholtz energy
C1 constant at infinite pressure as defined in eq.(3)
G Gibbs energy
Ki K value of component i defined as y

i
/x

i

kij binary interaction parameter
L, M, N parameters in the Twu’s α function
P pressure
R gas constant
T temperature
u, w cubic equation of state constants
x

i
mole fraction of component i

Z compressibility factor

Greek letters

α cubic equation of state alpha function
δij characteristic parameter of interaction between molecules i and j.
φi volume fraction of component i as defined in eq.(20)
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Subscripts

∞ infinite pressure
i, j property of component i, j
ij interaction property between components i and j
vdw van der Waals

Superscripts

* reduced property
E excess property
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Table 1
L, M, and N parameters of the temperature-dependent α function given by
eq.(27) for pure components to be used with the SRK cubic equation of state
Component Tc(K) Pc(bar) L M N

n-pentane 469.70 33.70 0.379229 0.841706 1.82331
n-hexane 507.85 30.31 0.158080 0.872819 3.84418
n-heptane 540.16 27.36 0.340339 0.844963 2.38332
cyclohexane 553.58 40.73 0.245880 0.845046 2.25895
benzene 562.16 48.98 0.163664 0.860016 2.98498
acetone 508.20 47.01 0.479844 0.870627 1.79010
methanol 512.64 80.97 0.690551 0.911298 1.96941
ethanol 513.92 61.48 1.07646 0.964661 1.35369
water 647.13 220.55 0.413297 0.874988 2.19435
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Table 2
NRTL interaction parameters and results of the prediction in terms of average absolute
deviation percentage (AAD%) for activity coefficients, bubble point pressure and K-values

mixing rule k
12

k
21

l
12

γ1(%) γ2(%) P(%) K1(%) K2(%)

a acetone(1)/water(2) from 100 to 250 C; I/1a/194
A

12
=68.4849, A

21
=746.618, α

12
=0.2862 at 100 C

WS(b) 0.2751 2.98 4.17 3.01 4.44 3.31

TST(b) 0.1412 0.2616 0.62 0.69 1.95 5.58 4.08

TST(bvdw) 0.3578 5.09 7.34 4.37 4.29 4.43

aethanol(1)/n-heptane(2) from 30.12 to 70.02 C; I/2e/377, 379; I/2c/457, 458
A

12
=521.746, A

21
=727.003, α

12
=0.4598 at 30.12 C

WS(b) 0.3368 10.13 5.69 3.21 3.90 5.56

TST(b) 0.4812 0.1931 4.47 3.34 2.18 2.59 5.02

TST(bvdw) 0.2623 6.59 4.05 1.82 2.20 3.21

an-pentane(1)/acetone(2): from -35 C to 25 C; I/3+4/188, 189, 190
A

12
=485.086, A

21
=483.326, α

12
=0.4683 at -35 C

WS(b) 0.2288 1.73 3.30 5.28 4.47 5.99

TST(b) 0.1882 0.2446 2.08 2.23 5.53 4.14 5.82

TST(bvdw) 0.1308 1.27 2.11 5.45 4.80 5.94

aethanol(1)/water(2) from 24.99 to 120 C; I/1b/93, 106, 107, 108
A

12
=13.3878, A

21
=437.683, α

12
=0.2945 at 24.99 C

WS(b) 0.2308 2.34 3.10 3.51 5.45 4.09

TST(b) 0.1202 0.2141 0.31 0.34 3.37 6.11 4.37

TST(bvdw) 0.2576 2.83 3.91 4.95 6.83 5.38

amethanol(1)/cyclohexane(2) from 25 to 55 C; I/2a/242; I/2c/208, 209
A

12
=644.886, A

21
=784.966, α

12
=0.4231 at 25 C

WS(b) 0.3593 10.01 5.25 4.05 4.31 6.07

TST(b) 0.4893 0.2260 4.98 3.84 2.08 2.94 4.39

TST(bvdw) 0.2590 6.19 3.61 2.50 2.76 4.06

a methanol(1)/benzene(2) from 25 to 90 C; I/2c/188; I/2a/207,210,216,217,228
A

12
=441.228, A

21
=738.702, α

12
=0.5139 at 25 C

WS(b) 0.2812 8.42 4.53 1.99 2.90 3.87

TST(b) 0.3925 0.1699 4.18 3.08 2.77 4.51 3.85

TST(bvdw) 0.1927 4.87 2.90 1.35 2.80 2.90
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Table 2 (continued)

mixing rule k
12

k
21

l
12

γ1(%) γ2(%) P(%) K1(%) K2(%)

a acetone(1)/benzene(2) from 25 to 45 C; I/3+4/194, 203, 208
A

12
=-35.4443, A

21
=193.289, α

12
=0.3029 at 25 C

WS(b) 0.0567 0.50 0.45 0.82 1.06 1.84

TST(b) 0.0577 0.0428 0.04 0.04 0.79 1.01 1.63

TST(bvdw) 0.0266 0.16 0.15 0.80 1.03 1.69

a acetone(1)/ethanol(2) from 32 to 48 C; I/2a/323, 324, 325
A

12
=24.3880, A

21
=224.395, α

12
=0.3007 at 32 C

WS(b) 0.0683 0.06 0.08 1.16 0.86 1.67

TST(b) 0.0616 0.0635 0.04 0.04 1.15 0.86 1.68

TST(bvdw) 0.0500 0.26 0.29 1.24 0.94 1.71

a acetone(1)/methanol(2) from 45 to 55 C; I/2a/75, 80, 81
A

12
=31.5237, A

21
=180.554, α

12
=0.3004 at 45 C

WS(b) 0.1052 0.86 1.02 0.86 1.15 1.47

TST(b) 0.0667 0.0969 0.08 0.09 0.73 0.89 0.97

TST(bvdw) 0.1012 0.84 1.01 0.84 1.15 1.45

aethanol(1)/benzene(2) from 25 to 55 C; I/2a/398, 407, 415, 417, 418, 421, 422
A

12
=115.954, A

21
=584.473, α

12
=0.2904 at 25 C

WS(b) 0.1941 4.90 3.64 2.26 5.22 3.06

TST(b) 0.2615 0.1230 1.06 0.90 1.44 3.83 2.98

TST(bvdw) 0.1179 2.87 2.22 1.65 4.13 2.63

amethanol(1)/water(2) from 24.99 to 100 C; I/1b/29; I/1/41, 49, 72, 73
A

12
=-23.1150, A

21
=188.147, α

12
=0.3022 at 24.99 C

WS(b) 0.0745 0.37 0.42 2.58 4.03 4.29

TST(b) 0.0326 0.0457 0.01 0.01 2.63 4.21 4.35

TST(bvdw) 0.1374 1.00 1.23 2.93 4.44 5.09

amethanol(1)/n-hexane(2) from 25 to 45 C; I/2c/219; I/2a/252
A

12
=823.172, A

21
=848.519, α

12
=0.4388 at 25 C

WS(b) 0.3954 11.95 5.61 5.20 5.98 5.08

TST(b) 0.5395 0.2406 7.11 5.37 2.78 3.38 2.94

TST(bvdw) 0.3190 8.34 4.55 3.77 4.41 3.80

a data taken from DECHEMA Chemistry Data Series by Gmehling, Onken, and Arlt;
numbers corresponding to volume/part/page.
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